An outstanding technique in point of ultra-precision as well as economical production of mirrors is Single Point Diamond Turning (SPDT). The unique properties of the diamonds are used to get optical surfaces with roughness values down to 5 nm rms (root mean square) and very precise form accuracy down to 70 nm rms and 500 nm p.-v. (peak to valley) value over an area of 200 mm x 200 mm. This quality level is typical for applications in the Near Infrared (NIR) and Infrared (IR) range. For applications in the VIS and UV range the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Favorable is an aluminium base body plated with a thick-film of Nickel-Phosphorus alloy (NiP). This alloy can be polished with computer assistance. Ion Beam Figuring (IBF) is the final manufacturing step. The properties after the finishing process are better than 1 nm rms for roughness and down to 15 nm rms respectively 100 nm p.-v. regarding the surface irregularity for complex optical shapes. The techniques SPDT, polishing and IBF ensures a high quality level for large mirrors with plan, spherical or aspherical surfaces. The manufacturing chain will be analyzed by surface characterisation based on 2D profilometry and white light interferometry to measure the roughness and 3D-profilometry and interferometry to monitor the shape irregularity. Scattering light analysis deepens these investigations. This paper summarizes technologies and measurement results for SPDT and surface finish of metal mirrors for novel optical applications
Optics for telescopes -on ground and in space -is getting more and more into complex geometries. Weight reduction and new materials together with aspherical shape and off-axis set-ups increase the need for deterministic processes. With the advent of free-form surfaces having no symmetry at all, a new chapter for fabrication issues is opened.This paper describes our current achievements to combine different fabrication and measurement technologies to cope with the increasing demand in precision and complexity. We will explain our fabrication approach covering the full range from the raw material to the coated and measured component. Several examples of current and recent projects are shown. The variety of materials used ranges from Zerodur ® to SiC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.