Abstract:In the work the analysis of existent methods of determination of local and general forces of cutting at polishing of surfaces with a type as the arc of circumference is given. The dependence for determination of speed polishing and method for determination of thickness of the cut away layer on condition of equality of the tricked into and taken off volumes of material are offered. The method of determination of cutting forces, which takes into account cutting and deforming grain, is suggested. The method of determining the thickness of a cutting layer of one of the cutting edge, from the condition that the volume of material that is brought and is cut in each local point of contact spots has been proposed. The proposed method takes into account the compliance of the processing system and the discontinuity of the abrasive surface of the tool. By experimental way upper limits of thickness cutting layer when using different abrasive materials for a wide range of cutting speeds have been obtained.
In the article the method of grinding with crossed axes of the tool and the workpiece got further developed. The work discloses a method of processing details having an external surface with a profile in the form of an arc of a circle of variable radius (for example, rolls of pipe rolling mills). The particular three-dimensional geometric models of the processing, shaping and profiling of abrasive wheels have been developed. A method for controlling the grinding process, which ensures the removal of allowances along equidistant curves has been offered. The developed method of grinding provides a constant depth of cutting according to the coordinate of profile processing. This is achieved at the expense of the synchronous inclination of the wheel and its insertion by the size of the allowance. The diameter of grinding wheel affects on the maximum angle of orientation of the wheel has been proven. It has been shown that increasing the diameter of the abrasive wheel has led to a slight decrease in value orientation angle.
A general model is developed, and on its basis, there are special models formulated of the grinding process with crossed axes of the tool and workpiece with a profile in the form of a circle arc. A new method of control of the grinding process is proposed, which will provide processing by equidistant curves, and the amount of cutting of a circle equal to the allowance. This will increase the productivity and quality of grinding. The presented method of grinding implements the processing with the spatial contact line of the tool and workpiece. When the axes are crossed, the contact line is stretched, which leads to an increase of the contact area and, accordingly, to a decrease of the temperature in the processing area. This allows processing of workpieces with more productive cutting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.