A major challenge in organic solar cell design is the trade-off between oxidative stability and work function of the metal cathode. We found that in single-junction polymer solar cells, this problem can be surmounted by solution-based incorporation of fulleropyrrolidines with amine (C60-N) or zwitterionic (C60-SB) substituents as cathode-independent buffer layers. Specifically, a thin layer of C60-N reduced the effective work function of Ag, Cu, and Au electrodes to 3.65 electron volts. Power conversion efficiency values exceeding 8.5% were obtained for organic photovoltaics independent of the cathode selection (Al, Ag, Cu, or Au). Such high efficiencies did not require precise control over interlayer thickness, as devices prepared with C60-N and C60-SB layers ranging from 5 to 55 nanometers performed with high efficiency.
Conjugated polymeric zwitterions, when utilized as interlayer materials in bulk heterojunction organic solar cells, lead to significantly enhanced power conversion efficiencies. The electrostatic model of self-aligning dipolar side groups in the vicinity of the metal surface rationalizes the effects of reduced cathode work function, a key factor behind the observed enhanced efficiency.
Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (V) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton quenching, possess optimal electron affinity that neither limits the work function reduction nor impedes the charge extraction, transport electrons selectively, and exhibit long-term stability. Our recent discoveries show that CPZs achieve many of these attributes, and are poised for further expansion and development in the interfacial science of organic electronics. This Account reviews a recent collaboration that began with the synthesis of CPZs and a study of their structural and electronic properties on metals, then extended to their application as interlayer materials for OPVs. We discuss CPZ structure-property relationships based on several material platforms, ranging from homopolymers to copolymers, and from materials with intrinsic p-type conjugated backbones to those with intrinsic n-type conjugated backbones. We discuss key components of such interlayers, including (i) the origin of work function reduction of CPZ interlayers on metals; (ii) the role of the frontier molecular orbital energy levels and their trade-offs in optimizing electronic and device p...
We report a direct and facile synthesis of novel conjugated polymeric zwitterions (CPZs) as a simple route to electronically active homopolymers and copolymers containing dipole-inducing pendent zwitterions. Sulfobetaine-containing polythiophenes (PTSB-1 and PTSB-2) and alternating thiophene–benzothiadiazoles (PTBTSB-1 and PTBTSB-2) were prepared and characterized relative to alkylated polymer analogues (POT- a -T and POT- a -BT). The polar zwitterionic side chains make these polymers hydrophilic and salt-responsive, with interesting electronic properties that depend on zwitterion distance from the conjugated polymer backbone (tether length), as characterized by UV–vis absorption and ultraviolet photoelectron spectroscopy (UPS). Close proximity (CH2 spacer) of the sulfobetaine groups to the polymer backbone results in increased ionization potential and enlarged band gaps of 2.19 and 2.04 eV for PTSB-1 and PTBTSB-1, respectively. On Au and Ag surfaces, the zwitterionic pendent groups significantly alter the work function due to the presence of an interfacial dipole, with the largest interfacial dipoles measuring −1.29 eV (PTBTSB-1/Au) and −0.69 eV (PTBTSB-1/Ag).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.