The energy of disruption generated runaway electrons can reach as high as tens of megaelectronvolt and they can cause a serious damage of plasma-facing-component surfaces in large tokamaks like International Thermonuclear Experimental Reactor (ITER). The synchrotron radiation diagnostic allows a direct observation of such runaway electrons and an analysis of their parameters and promotes the safety operation of present day large tokamaks and future ITER. Only this diagnostic will be applied in ITER. In the paper detail analysis of the synchrotron radiation spectra of runaway electrons for the recent Experimental Advanced Superconducting Tokamak (EAST, Institute of Plasma Physics of Chinese Academy of Sciences) experiment parameters has been presented. The calculations are carried out on the base of precise expression for synchrotron radiation spectral density. They make more precise spectra analysis of the previous paper by Zhou R.
The runaway electron event is the fundamental physical phenomenon and tokamak is the most advanced conception of the plasma magnetic confinement. The energy of disruption generated runaway electrons can reach as high as tens of mega-electron-volt and they can cause a catastrophic damage of plasma-facing-component surfaces in large tokamaks and International Thermonuclear Experimental Reactor (ITER). Due to its importance, this phenomenon is being actively studied both theoretically and experimentally in leading thermonuclear fusion centers. Thus, effective monitoring of the runaway electrons is an important task. The synchrotron radiation diagnostic allows direct observation of such runaway electrons and an analysis of their parameters and promotes the safety operation of present-day large tokamaks and future ITER. In 1990 such diagnostic had demonstrated its effectiveness on the TEXTOR (Tokamak Experiment for Technology Oriented Research, Germany) tokamak for investigation of runaway electrons beam size, position, number, and maximum energy. Now this diagnostic is installed practically on all the present-day’s tokamaks. The parameter v┴/|v||| strongly influences on the runaway electron synchrotron radiation behavior (v|| is the longitudinal velocity, v┴ is the transverse velocity with respect to the magnetic field B). The paper is devoted to the theoretical investigation of runaway electron synchrotron radiation spot shape when this parameter is not small that corresponds to present-day tokamak experiments. The features of the relativistic electron motion in a tokamak are taken into account. The influence of the detector position on runaway electron synchrotron radiation data is discussed. Analysis carried out in the frame of the nonlinear cone model. In this model, the ultrarelativistic electrons emit radiation in the direction of their velocity v→ and the velocity vector runs along the surface of a cone whose axis is parallel to the magnetic field B. The case of the small parameter v┴/|v||| (v┴/|v|||<<1, linear cone model) was considered in the paper: Plasma Phys. Rep. 22, 535 (1996) and these theoretical results are used for experimental data analysis.
The secondary runaway electrons generation is the process in which already existing high energy runaway electrons knock out thermal plasma electrons directly into the runaway region by close Coulomb collisions. Such knocked-on electrons are immediately accelerated to ultrarelativistic velocities, since in the runaway region the toroidal electric field force overcomes the collisional friction force with thermal plasma particles. The avalanche of runaway electrons with mega-electron-volt energy emerges, hit of which with the construction elements of large-scale tokamaks and future international tokamak ITER can lead to catastrophic consequences. Due to its importance, this phenomenon is being actively studied both theoretically and experimentally in leading thermonuclear fusion centers. It is known that during secondary generation, the value of the transversal component of knocked-on electrons momentum with respect to the confining magnetic field may be significantly higher than the longitudinal one: p⊥ >> p∥. Thus, conditions for knocked-on electron trapping in a non-uniform tokamak magnetic field occur (banana orbits). Such electrons can no longer be accelerated by the inducted toroidal electric field to high energies, avalanche formation is partially suppressed. The question is how long this population of knocked-on and trapped electrons exists. In the presented paper, it is shown the additional possibility of formation and existence of such long-lived banana orbits of suprathermal electrons under conditions of plasma MHD activity when MHD instability spikes induced the strong burst of the toroidal electric field that results in the abrupt growth in these knocked-on and trapped electrons. This phenomenon is considered for the recent low-density EAST (Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China) tokamak quasistationary runaway discharges. Long-lived trapped electrons (p⊥ >> p∥) also have an influence on the intensity of ECE emission. The considered phenomenon is important for correct interpretation of the runaway experiments on present-day tokamaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.