Peculiarities of formation of microstructure in composites based on chemically synthesized zirconium nanopowders obtained by the method of decomposition from fluoride salts were considered. Hydrofluoric acid, concentrated nitric acid, aqueous ammonia solution, metallic zirconium, and polyvinyl alcohol were used. It was established that the reduction of porosity in nanopowders in the sintering process is the main problem in the formation of high-density materials. Analysis of various initial nanopowders, their morphology, and features of sintering by the method of hot pressing with direct transmission of electric current was made. Peculiarities of obtaining the composites based on them with the addition of Al2O3 nanopowders applying the electric sintering method were considered. It was shown that the increase in the content of alumina nano additives leads to an increase in strength and crack resistance of the samples due to simultaneous inhibition of abnormal grain growth and formation of a finer structure with a high content of tetragonal phase. The influence of sintering modes on the formation of the microstructure of zirconium nanopowders has been studied for different contents of alumina additives. Electric current promotes the surface activity of nanopowders and its variable value promotes partial fragmentation of agglomerated grains thus affecting the composite structure. Physical-mechanical properties of the obtained samples, optimal compositions of mixtures, and possibilities of improving some parameters were determined. It was found that nanopowders of zirconium dioxide obtained by the method of decomposition from fluoride salts are quite suitable for the production of composite materials with high physical and mechanical properties. They can compete with imported analogs and enable obtaining of crack resistance of 7.8 MPa·m1/2 and strength of 820 MPa.
This paper considers features related to manufacturing the chromium oxide-based tool material. The process involved ultra-dispersed powders made of aluminum nitride. It has been established that the destruction of chromium oxide at high sintering temperatures is prevented through the reaction sintering of chromium oxide (Cr2O3) and aluminum nitride (AlN). It was established that the structure of the composite depends both on the temperature and the duration of hot pressing. Thermodynamic calculations of the interaction between Cr2O3 and AlN showed that this interaction begins at a temperature of 1,300 °C. In contrast to hot pressing in the air, no СrN and Сr2N compounds were formed in a vacuum. With increasing temperature, the content of Al2O3 in solid solution becomes maximum at a temperature of 1,700 °C in the case of hot pressing in the air while in vacuum the content of Al2O3 remains unchanged within the entire temperature range of 1,300–1,700 °C. When increasing the time of hot pressing to 30 minutes, the size of individual grains reaches 10 μm. It has been shown that in the sintering process involving Cr2O3 and AlN, the plasma-chemical synthesis produces the solid solution (Cr, Al)2O3 at the interphase boundary, which improves the mechanical properties of the material. The influence exerted on the quality of the machined surface of tempered hard steel when machining by the devised tool material based on chromium oxide with an optimal admixture of 15 wt % of ultra-dispersed aluminum nitride powder was investigated. It was determined that the quality of the machined hard steel surface improved compared to standard imported tool plates. It was established that the resulting tool material, in addition to relatively high strength and crack resistance, also demonstrates high thermal conductivity, which favorably affects the quality of the machined steel surface, given that lubricants and coolants are not used during the cutting process.
This paper is devoted to the sintering process of Al2O3–SiO2–ZrO2 ceramics. The studied method was electroconsolidation with directly applied electric current. This method provides substantial improvements to the mechanical properties of the sintered samples compared to the traditional sintering in the air. The research covered elemental and phase analysis of the samples, which revealed phase transition of high-alumina solid solutions into mullite and corundum. Zirconia was represented mainly by tetragonal phase, but monoclinic phase was present, too. Electroconsolidation enabled samples to reach a density of 3.0 g/cm3 at 1300 °С, while the sample prepared by traditional sintering method obtained it only at 1700 °С. For the composite Al2O3—20 wt.% SiO2—10 wt.% ZrO2 fabricated by electroconsolidation, it was demonstrated that fracture toughness was higher by 20–30%, and hardness was higher by 15–20% compared to that of samples sintered traditionally. Similarly, the samples fabricated by electroconsolidation exhibited elastic modulus E higher by 15–20%. The hypothesis was proposed that the difference in mechanical and physical properties could be attributed to the peculiarities of phase formation processes during electroconsolidation.
The creation of new materials with predetermined properties is perhaps the mostimportant issue and problem of modern materials science. Increasingly harsh conditions for the useof materials in modern, and especially - promising technological processes, the need to ensure andimplement the safest conditions for humanity and the environment of modern industrial production,the importance and increasing role of economic factors – all these factors necessitate improvingknown and creating new materials, as well as technologies for their production and use. Furthereconomically justified, socially attractive and technologically safe use of nuclear technologies andoperation of modern complex technical facilities, which undoubtedly include nuclear power devices,further development of nuclear and in the future thermonuclear energy is impossible withoutmodernization.The article implements the method of electron beam heating of a mixture of yttrium andzirconium oxides for the synthesis of complex oxides. The initial mixture contained ingredients in anamount corresponding to the compound Y2Zr2O7. The mixture was heated in a tantalum containeralmost to the melting point of tantalum (2915 C). The high temperature of the process is provided bythe use of a system with a plasma electron emitter. The purpose of the vacuum high-temperature effect on the powder mixture was to implement conditions sufficient to initiate reactions for the synthesis ofcomplex oxides. The analysis of the obtained samples recorded after the initial high-temperaturetreatment a fluorite-type phase (Y, Zr) Ox with a lattice parameter of 5.2 Å and technologicalimpurities of tantalum oxide. After additional annealing in air at 1200 C for 7 hours, another phasewith a lattice parameter of 5.17 Å was recorded, as well as impurities of tantalum oxide. The testedsynthesis conditions lead to the formation of multi-element oxides with a structure of only fluorite,pyrochlore phase in the heat is not detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.