Since in Ukraine there are fines for imbalances in solar power generation in the “day-ahead” energy market, the forecasting of electricity generation is an important component of the solar power plant operation. To forecast the active power generation of photovoltaic panels, a mathematical model should be developed, which considers the main factors affecting the volume of energy generation. In this article, the main factors affecting the performance of solar panels were analysed using correlation analysis. The data sets for the construction of the forecasting model were obtained from the solar power plant in the Kyiv region. Two types of data sets were used for the analysis of factors and model building: 10-minute time interval data and daily data. For each data set, the input parameters were selected using correlation analysis. Considering the determining factors, the models of finding the function of reflecting meteorological factors in the volume of electricity generation are built. It is established that through models with a lower discreteness of climatic parameters forecast it is possible to determine the potential volume of electricity production by the solar power plant for the day-ahead with a lower mean absolute error. The best accuracy of the model for predicting electric power generation over the 10-minute interval is obtained in the ensemble random of a forest model. It is determined that models without solar radiation intensity parameters on the input have an unsatisfactory coefficient of determination. Therefore, further research will focus on combining a model of forecasting the day-ahead solar radiation with 10-minutes discreteness with a model for determining the amount of electricity generation. The determined predicted values of solar radiation will be the input parameter of the forecasting model described in the article
One of the main tasks of the last two decades is to find ways to optimize energy consumptions for aircrafts. The commercial aviation business is increasingly using environmental monitoring systems and electrical control by using AC and DC tires. One of the trends in the development of aircraft control systems is the replacement of hydraulic and pneumatic systems with electrical ones. The aerospace industry and airlines are interested in performing steering operations without major engines. This operation method allows to save fuel, reduce brake wear, eliminates towing and achieve decreasing of environmental pollution. In the future it is necessary to implement electric steering using a traction drive (TD) based on a synchronous motor with permanent magnets (PMSM). This system is powered by an available auxiliary power unit or other sources such as fuel cells or batteries. This study presents a highly efficient electric steering system as a modern solution for improving the ground operations of modern aircraft powered by main engines. The system was investigated using steering profiles for takeoff and landing. The study determined the effectiveness of its use for steering. The influence of external factors and the change of parameters of the electromechanical system of wheel with an elastic tire were investigated. The results of modeling the dynamic processes of an electromechanical system containing elastic links in the conditions of parametric perturbations confirmed the robust stabilization of dynamic control quality indicators based on the laws of fuzzy logic.
The development of "green" energy in Ukraine involves an increasingof the amount of electricity generated by photovoltaic modules (PMs). However, PMs have disadvantages associated with the inconsistency of electric generation in time due to the diurnal and annual motion of the Sun and to the shading of the modules. In order to maintain steady generation during the day and the year, there are two ways to minimize the impact of these factors.First one is to install an excess capacity which means higher cost of the solar plant and using an additional area.Second one isto apply a system of orientation PMs perpendicular to the sun's rays.
In the article three cases of solar panels installation are considered: usinga two-axistracking system, using aheight tracking system and anazimuth tracking system. There wasgiven the method and algorithms of calculation and analysis the parameters of theuniaxialand biaxial tracking system when installed in Kyiv.The algorithm involves calculation the coordinates of Sun in any moment of time for the considered location, pass-through and absorptive capacityof the protective glass, estimation the amount of the direct and diffuse solar radiation and their impact on the total radiation on the surface of the photoconverter. There was made an estimation of energy usage efficiency levels for the considered systemsusing the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.