The processes of intelligent data processing in computer vision systems have been researched. The problem of structural image recognition is relevant. This is a promising way to assess the degree of similarity of objects. This approach provides the simplicity of construction and the high reliability of decision making. The main problem of an effective description of characteristic features is the distortion of fragments of analyzed objects. The reasons for changing the input data can be the actions of geometric transformations, the influence of background or interference. The elements of false objects with similar characteristics are formed. The problem of ensuring high-quality recognition requires the implementation of effective means of image processing. Methods of statistical modeling, granulation of data and fuzzy sets, detection and comparison of keypoints on the image, classification and clustering of data, and simulation modelling are used in this research. The implementation of the proposed approaches provides the formation of a concise description of features or a vector representation of unique keypoints. The verification of theoretical foundations and evaluation of the effectiveness of the proposed data processing methods for real image bases is performed using the OpenCV library. The applied significance of the work is substantiated according to the criterion of data processing time without reducing the characteristics of reliability and interference immunity. The developed methods allow to increase the structural recognition of images by several times. Perspectives of research may involve identifying the optimal number of keypoints of the base set.
The article considers the problem of image recognition in computer vision systems. The results of the development of the method for image classification, using a structural approach, are presented. The classification method is based on calculating the values of statistical distributions for the set of description descriptors. The distribution vector for a fixed set of classes is based on the calculation of the degree of similarity with the integral characteristics for the descriptions of the etalon base. Two options for constructing the classifier on the principles of objectetalon and object descriptoretalon, which differ in the degree of integration of the solution, are proposed. The median for the set of vectors describing the etalon is used as the aggregate characteristic of the etalon descriptions. The experimental evaluation of the effectiveness of the developed classifiers in terms of verification of performance and evaluation of the probability of correct classification according to the results of processing of applied images based on three etalons are carried out. The values of precision and completeness indicators for the method object descriptoretalon, which has demonstrated the significant advantage over the integrated approach, are given. At the same time, both proposed in the experiment methods classify the set of etalons without error. The methods of mathematical statistics, intellectual data analysis, image recognition, the apparatus for calculating the relevance of the system of the features, as well as simulation modelling, are used in this research. Based on the study and the experiment, it was found that the processing time of the images for the developed method is approximately 7 times less than for the traditional method, without reducing the accuracy. The perspective of further research is to study the interference immunity of the developed methods and evaluate their applied effectiveness for three-dimensional image collections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.