Following reconstruction with high spatial resolution of the 3-D geometry of the dendritic arborizations of two abducens motoneurons, we simulated the distribution of electronic voltage over the whole dendritic tree. Here, we demonstrate that the complex stochastic electronic structure of both motoneurons can be reduced to a statistically significant small set of well discriminated clusters. These clusters are formed by dendritic branches belonging to different dendrites of the neuron but with similar electronic properties. A cluster analysis was performed to estimate quantitatively the partition of the branches between the dendritic clusters. The contents of the clusters were analysed in relation to their stability under different values of specific membrane resistivity (Rm), to their remoteness from the soma and their location in 3-D space. The cluster analysis was executed in a 2-D parameter space in which each dendritic branch was described by the mean electrotonic voltage and gradient. The number of clusters was found to be four for each motoneuron when computations were made with Rm = 3 k omega.cm2. An analysis of the cluster composition under different Rm revealed that each cluster contained invariant and variant branches. Mapping the clusters upon the dendritic geometry of the arborizations allowed us to describe the cluster distribution in terms of the 3-D space domain, the 2-D path distance domain and the total surface area of the tree. As the cluster behaviour reflects both the geometry and the changes in the neuronal electrotonic structure, we conclude that cluster analysis provides a tool to handle the functional complexity of the arborizations without losing relevant information. In terms of synaptic activities, the stable dendritic branches in each cluster may process the synaptic inputs in a similar manner. The high percentage of stable branches indicates that geometry is a major factor of stability for the electrotonic clusters. Conversely, the variant branches introduce the conditions for mechanisms of functional postsynaptic plasticity.
Introduction. Active ECG electrodes for daily usable wearable electronics (glasses, headphones) enable making long-term cardiovascular disease diagnostics available to many people.Problem Statement. The methods of ECG recording become more accessible over the years. However, on the way to their general use, even in cases where only reliable registration of the R-wave of the ECG is important, there are certain difficulties associated with the need to apply special electrodes (eg, silver chloride ones) to certain parts of the body through wet pads and to perform specific actions. The problem is solved by using dry electrodes built into the usual devices. However, in this case, a low amplitude of the useful signal and a high contact resistance (for example, on the surface of the head) do not allow recording an ECG by conventional means.Purpose. The purpose of this research is to develop easy-to-use body ECG electrodes that may be built into everyday appliances.Materials and Methods. Active electrodes based on flexible conductive materials and high-quality operational amplifiers have been described. The main parameters of the electronic circuit have been obtained by model and experimental research. The parameters have been compared with the corresponding characteristics of commercial samples.Results. Prototype active ECG electrodes have been developed, created, and studied. The obtained results have shown that the dependence of the input reactance on the frequency plays an important role in terms of the final signal quality. For a low-amplitude ECG signal, the prototype has shown a signal-to-noise ratio that is higher by 4.7 dB than that for high-quality commercial electrodes.Conclusions. The designed electrodes may be used in body devices, on the body parts with a low amplitude of the useful signal and a high resistance of skin-electrode contact.
In this paper we investigated a pulse oximetry-based method for mobile devices. This method obtains bio-signals related to blood pulsation in transparent parts of body. The most widely accepted field for use of this method is hospital care. In these cases a pulse oximeter is the best solution for the monitoring of emergency patients. A promising field for pulse oximetry is physical exercise. It only requires simple clips such as ear-clips, finger-clips, headbands etc. However this method presents some difficulties: weak signal, noise ratio, motion artefacts, low perfusion. We used a MAX30100 Oximeter and Heart Rate Sensor integrated circuit to obtain signals of blood pulse waves from red and infrared light emission diodes (LED). This device measures the oxygen saturation of a person’s blood by placing an LED and a photodetector against the thin skin of a person’s body, such as a fingertip, wrist or earlobe. The MAX30100 is a 14-pin surface mount integrated circuit that contains sensors for measuring a person’s heart rate. It can also indirectly determine the oxygen saturation of a person’s blood. The MAX30100 provides a complete pulse oximetry and heart rate measurement solution for medical monitors and wearable fitness devices. As each LED emits light into a person’s finger, the integrated photodetector measures variations in light caused by changes in blood volume. An integrated 16-bit analog to digital converter (ADC) with programmable sample rate converts the photodetector output to a digital value. The MAX30100 filters out ambient light that can interfere with an accurate reading. Data are read through a serial I2C interface to computer for further processing. The LED current can be programmed from 0 to 50 mA with proper supply voltage. The LED pulse width can be programmed from 200 µs to 1.6 ms to optimize measurement accuracy and power consumption based on use cases. The SpO2 algorithm is relatively insensitive to the wavelength of the infrared LED, but the red LED’s wavelength is critical to correct interpretation of the data. The temperature sensor data can be used to compensate errors with ambient temperature changes. During the experiments we registered oxygen concentration values under different conditions. With low muscular activity we observed high stability and repeatability of measuring values under various exterior conditions. However, with high muscular activity there were various artefacts in the gauged signals that led to contortion of effects. We identified the boundaries of the validity of measuring and propose the use of an adapted filter in order to distinguish pulse waves from optical signals more reliably. These devices can be applied in fitness training , medical monitoring and used as wearable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.