Context. Asteroid (2579) Spartacus is a small V-type object located in the inner main belt. This object shows spectral characteristics unusual for typical Vestoids, which may indicate an origin deeper than average within Vesta or an origin from an altogether different parent body. Aims. Our main goal is to study the origin of Spartacus. We derive the spin of Spartacus and a convex shape model of Spartacus in order to increase the knowledge of the body’s physical properties. The rotational parameters are then used to investigate dynamical evolution of the object as well as to distinguish regions sampled by spectral observations to determine whether its surface displays heterogeneity. Methods. We collected lightcurves available from the literature (oppositions of 2009, 2012) and obtained additional photometric observations at various telescopes in 2016, 2017, and 2018. We used the lightcurve inversion method to derive a spin and convex shape model. We have collected spectral observations over two rotational periods of Spartacus and determined its spectral parameters using the modified Gaussian model (MGM). We then dynamically integrated the orbital elements of Spartacus, taking into account existing information, including its thermal properties, size and the derived spin axis orientation. Results. We find two models for (2579) Spartacus: (a) λ = 312° ± 5°, β = −57° ± 5° and (b) λ = 113° ± 5°, β = −60° ± 5° both retrograde. We find that the drift direction for Spartacus is consistent with separation from Vesta, and after a backward integration of 1 Gyr the asteroid reaches the boundary of the family. We did not observe spectral variations with rotation, thus the body most likely has a homogeneous surface. Additionally, new spectral analysis indicates that the 1.0 and 2.0 μm band centers are within ranges that are typical for Vestoids while the area ratio of these bands is about half that of typical Vestoids. Conclusions. The asteroid (2579) Spartacus is in retrograde rotation and has a drift direction consistent with an origin from Vesta. The revised spectral band centers are within ranges typical for Vestoids, while band area ratio (BAR) is unusually low compared to that of other V-types. The dynamical model shows that the asteroid could have migrated to its current location from the edges of the Vesta family within 1 Gyr, but an origin from an earlier impact on Vesta could also be plausible.
Context. Basaltic V-type asteroids play a crucial role in studies of Solar System evolution and planetesimal formation. Comprehensive studies of their physical, dynamical, and statistical properties provide insight into these processes. Thanks to wide surveys, currently there are numerous known V-type and putative V-type asteroids, allowing a detailed statistical analysis. Aims. Our main goal is to analyze I corrected for US language conventions in this paper the currently available large sample of V-type spin rates, to find signatures of the non-gravitational Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect among the different V-type populations, and to estimate the spin barrier and critical density for V-type asteroids. Our intention is to increase the pool of information about the intriguing V-types. Methods. We collected rotational periods from the literature for spectrally confirmed V-types, putative V-types, and Vesta family members. Through spectroscopic observations we confirmed their taxonomic type and verified the high confirmation rates of the putative V-types. We combined the collected periods with periods estimated in this manuscript and produced rotational frequency distributions. We determined the spin barrier in the frequency–light curve amplitude space for V-type asteroids. Results. We analyzed rotational periods of 536 asteroids in our sample. As expected, due to the small size of the objects analyzed, the frequency distributions for the Vesta family and the V-types outside the family are inconsistent with a Maxwellian shape. The Vesta family shows an excess of slow-rotators. V-types outside the family show an excess of both slow and fast rotators. Interestingly, we found that the population of V-types outside the Vesta family shows a significant excess of fast rotators compared to the Vesta family. The estimated critical density for V-type asteroids exceeds ρc = 2.0 g cm−3, which surpasses the previous estimates. Conclusions. We demonstrated that V-type asteroids have been influenced by the thermal radiation YORP effect and that their critical spin rate is higher than for C-type asteroids. The population of V-types outside the Vesta family shows a significant excess of fast rotators compared to the Vesta family. We hypothesize that the objects that evolved from the Vesta family though the Yarkovsky drift are also more susceptible to the YORP effect. Objects for which YORP has not yet had enough time to act and those that are more YORP resistant will be left in the family, which explains the relatively small proportion of fast rotators being left. The YORP timescale must thus be similar to the migration timescale for those objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.