Many chemotherapy regiments are successfully used to treat breast cancer; however, often breast cancer cells develop drug resistance that usually leads to a relapse and worsening of prognosis. We have shown recently that epigenetic changes such as DNA methylation and histone modifications play an important role in breast cancer cell resistance to chemotherapeutic agents.
Cancer cells that develop resistance to chemotherapeutic agents are a major clinical obstacle in the successful treatment of breast cancer. Acquired cancer chemoresistance is a multifactorial phenomenon, involving various mechanisms and processes. Recent studies suggest that chemoresistance may be linked to drug-induced dysregulation of microRNA function. Furthermore, mounting evidence indicates the existence of similarities between drug-resistant and metastatic cancer cells in terms of resistance to apoptosis and enhanced invasiveness. We studied the role of miRNA alterations in the acquisition of cisplatin-resistant phenotype in MCF-7 human breast adenocarcinoma cells. We identified a total of 103 miRNAs that were overexpressed or underexpressed (46 upregulated and 57 downregulated) in MCF-7 cells resistant to cisplatin. These differentially expressed miRNAs are involved in the control of cell signaling, cell survival, DNA methylation and invasiveness. The most significantly dysregulated miRNAs were miR146a, miR-10a, miR-221/222, miR-345, miR-200b and miR-200c. Furthermore, we demonstrated that miR-345 and miR-7 target the human multidrug resistance-associated protein 1. These results suggest that dysregulated miRNA expression may underlie the abnormal functioning of critical cellular processes associated with the cisplatin-resistant phenotype.Breast cancer is the most common malignancy in women. In the United States, the incidence of invasive breast cancer, the most serious form of breast cancer, was estimated as 182,460 new cases and 40,480 deaths in 2008.1
Breast cancer is the most common malignancy in women. Successful treatment of breast cancer relies on a better understanding of the molecular mechanisms involved in breast cancer initiation and progression. Recent studies have suggested a crucial role of perturbations in ferritin levels and tightly associated with this, the deregulation of intracellular iron homeostasis; however, the underlying molecular mechanisms for the cancer-linked ferritin alterations remain largely unknown and often with conflicting conclusions. Therefore, this study was undertaken to define the role of ferritin in breast cancer. We determined that human breast cancer cells with an epithelial phenotype, such as MCF-7, MDA-MB-361, T-47D, HCC70 and cells, expressed low levels of ferritin light chain, ferritin heavy chain, transferrin, transferring receptor, and iron-regulatory proteins 1 and 2. In contrast, expression of these proteins was substantially elevated in breast cancer cells with an aggressive mesenchymal phenotype, such as Hs-578T, BT-549, and especially MDA-MB-231 cells. The up-regulation of ferritin light chain and ferritin heavy chain in MDA-MB-231 cells was accompanied by alterations in the subcellular distribution of these proteins as characterized by an increased level of nuclear ferritin and a lower level of the cellular labile iron pool as compared to MCF-7 cells. We established that ferritin heavy chain is a target of miRNA miR-200b, suggesting that its up-regulation in MDA-MB-231 cells may be triggered by the low expression of miR-200b. Ectopic up-regulation of miR-200b by transfection of MDA-MB-231 cells with miR-200b substantially decreased the level of ferritin heavy chain. More importantly, miR-200b-induced down-regulation of ferritin was associated with an increased sensitivity of the MDA-MB-231 cells to the chemotherapeutic agent doxorubicin. These results suggest that perturbations in ferritin levels are associated with the progression of breast cancer toward a more advanced malignant phenotype.
The conversion of early stage tumors into invasive malignancies with an aggressive phenotype has been associated with the irreversible loss of E-cadherin expression. The loss of E-cadherin expression in human tumors, including breast cancer, has been attributed to promoter CpG island hypermethylation and direct inhibition by transcriptional repressors. Recent evidence demonstrates that up-regulation of E-cadherin by and miR-200c through direct targeting of transcriptional repressors of E-cadherin, ZEB1, and ZEB2, inhibits epithelial-to-mesenchymal transition (EMT), a crucial process in the tumor progression. We demonstrate that microRNA miR-200 family-mediated transcriptional up-regulation of E-cadherin in mesenchymal MDA-MB-231 and BT-549 cells is associated directly with translational repression of ZEB1 and indirectly with increased acetylation of histone H3 at the E-cadherin promoter. The increase in histone H3 acetylation may be attributed to the disruption of repressive complexes between ZEB1 and histone deacetylases and to the inhibition of SIRT1, a class III histone deacetylase. These events inhibit EMT and reactivate a less aggressive epithelial phenotype in cancer cells. Additionally, disruption of ZEB1-histone deacetylase repressor complexes and down-regulation of SIRT1 histone deacetylase up-regulate proapoptotic genes in the p53 apoptotic pathway resulting in the increased sensitivity of cancer cells to the chemotherapeutic agent doxorubicin.Breast cancer is the most common malignancy in women. In the United States, the incidence of invasive breast cancer, the most serious form of breast cancer, was estimated at 182,460 new cases and accounted for 40,480 deaths in 2008.1 Despite advances in understanding the molecular mechanisms of breast cancer biology and improvements in early detection and treatment, in 50% of cases, cancer cells either are intrinsically resistant or rapidly acquire resistance against various cytotoxic chemotherapeutic drugs.2 Additionally, approximately 30% of all patients with early stages of breast cancer will develop recurrent disease, which is predominantly metastatic and resistant to treatment.3,4 Currently, cancer metastasis and drug resistance, intrinsic or acquired, are major obstacles in the successful treatment of breast cancer. 5,6
The importance of dysregulation of microRNA (miRNA) expression in nonalcoholic steatohepatitis (NASH) has been increasingly recognized; however, the association between altered expression of miRNAs and pathophysiological features of NASH and whether or not there is a connection between susceptibility to NASH and altered expression of miRNAs are largely unknown. In the present study, male inbred C57BL/6J and DBA/2J mice were fed a lipogenic methyl-deficient diet that causes liver injury similar to human NASH, and the expression of miRNAs and the level of proteins targeted by these miRNAs in the livers were determined. The administration of the methyl-deficient diet triggered NASH-specific changes in the livers of C57BL/6J and DBA/2J mice with a magnitude being more severe in DBA/2J mice. This was evidenced by a greater extent of expression of fibrosis-related genes in the livers of methyl-deficient DBA/2J mice. The development of NASH was accompanied by prominent changes in the expression of miRNAs, including miR-29c, miR-34a, miR-155, and miR-200b. Interestingly, changes in the expression of these miRNAs and protein levels of their targets, including Cebp-β, Socs 1, Zeb-1, and E-cadherin, in the livers of DBA/2J mice fed a methyl-deficient diet were more pronounced as compared to the C57BL/6J mice. These results demonstrate that alterations in expression of miRNAs are a prominent event during development of NASH induced by methyl deficiency and strongly suggest that severity of NASH and susceptibility to NASH may be determined by variations in miRNA expression response. More importantly, our data provide a mechanistic link between alterations in miRNA expression and pathophysiological and pathomorphological features of NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.