The most common approach in dynamic analysis of engineering structures and physical phenomenas consists in finite element discretization and mathematical formulation with subsequent application of direct time integration schemes. The space interpolation functions are usually the same as in static analysis. Here on example of 1-D wave propagation problem the original implicit scheme is proposed, which contains the time interval value explicitly in space interpolation function as results of analytical solution of differential equation for considered moment of time. The displacements (solution) at two previous moments of time are approximated as polynomial functions of position and accounted for as particular solutions of the differential equation. The scheme demonstrates the perfect predictable properties as to dispersion and dissipation. The crucial scheme parameter is the time interval – the lesser the interval the more correct results are obtained. Two other parameters of the scheme – space interval and the degree of polynomial approximation have minimal impact on the general behavior of solution and have influence on small zone near the front of the wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.