The development of a deep (stacked) convolutional auto-encoder in the Caffe deep learning framework is presented in this paper. We describe simple principles which we used to create this model in Caffe. The proposed model of convolutional autoencoder does not have pooling/unpooling layers yet. The results of our experimental research show comparable accuracy of dimensionality reduction in comparison with a classic auto-encoder on the example of MNIST dataset.
This paper presents the development of several models of a deep convolutional auto-encoder in the Caffe deep learning framework and their experimental evaluation on the example of MNIST dataset. We have created five models of a convolutional auto-encoder which differ architecturally by the presence or absence of pooling and unpooling layers in the auto-encoder’s encoder and decoder parts. Our results show that the developed models provide very good results in dimensionality reduction and unsupervised clustering tasks, and small classification errors when we used the learned internal code as an input of a supervised linear classifier and multi-layer perceptron. The best results were provided by a model where the encoder part contains convolutional and pooling layers, followed by an analogous decoder part with deconvolution and unpooling layers without the use of switch variables in the decoder part. The paper also discusses practical details of the creation of a deep convolutional auto-encoder in the very popular Caffe deep learning framework. We believe that our approach and results presented in this paper could help other researchers to build efficient deep neural network architectures in the future.
Advances in service-oriented architectures (SOA), virtualization, high-speed networks, and cloud computing has resulted in attractive pay-as-you-go services. Job scheduling on these systems results in commodity bidding for computing time. This bidding is institutionalized by Amazon for its Elastic Cloud Computing (EC2) environment and bidding methods exist for other cloud-computing vendors as well as multi-cloud and cluster computing brokers such as SpotCloud. Commodity bidding for computing has resulted in complex spot price models that have ad-hoc strategies to provide demand for excess capacity. In this paper we will discuss vendors who provide spot pricing and bidding and present a predictive model for future spot prices based on neural networking giving users a high confidence on future prices aiding bidding on commodity computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.