Abstract. Coupled atmosphere-fire models can now generate forecasts in real time, owing to recent advances in computational capabilities. WRF-SFIRE consists of the Weather Research and Forecasting (WRF) model coupled with the fire-spread model SFIRE. This paper presents new developments, which were introduced as a response to the needs of the community interested in operational testing of WRF-SFIRE. These developments include a fuel-moisture model and a fuel-moisture-data-assimilation system based on the Remote Automated Weather Stations (RAWS) observations, allowing for fire simulations across landscapes and time scales of varying fuel-moisture conditions. The paper also describes the implementation of a coupling with the atmospheric chemistry and aerosol schemes in WRF-Chem, which allows for a simulation of smoke dispersion and effects of fires on air quality. There is also a data-assimilation method, which provides the capability of starting the fire simulations from an observed fire perimeter, instead of an ignition point. Finally, an example of operational deployment in Israel, utilizing some of the new visualization and datamanagement tools, is presented.
We present a methodology to change the state of the Weather Research Forecasting (WRF) model coupled with the fire spread code SFIRE, based on Rothermel's formula and the level set method, and with a fuel moisture model. The fire perimeter in the model changes in response to data while the model is running. However, the atmosphere state takes time to develop in response to the forcing by the heat flux from the fire. Therefore, an artificial fire history is created from an earlier fire perimeter to the new perimeter, and replayed with the proper heat fluxes to allow the atmosphere state to adjust. The method is an extension of an earlier method to start the coupled fire model from a developed fire perimeter rather than an ignition point. The level set method can be also used to identify parameters of the simulation, such as the fire spread rate. The coupled model is available from openwfm.org, and it extends the WRF-Fire code in WRF release.
We propose a new type of the Ensemble Kalman Filter (EnKF), which uses the Fast Fourier Transform (FFT) for covariance estimation from a very small ensemble with automatic tapering, and for a fast computation of the analysis ensemble by convolution, avoiding the need to solve a sparse system with the tapered matrix. The method is combined with the morphing EnKF to enable the correction of position errors, in addition to amplitude errors, and demonstrated on WRF-Fire, the Weather Research Forecasting (WRF) model coupled with a fire spread model implemented by the level set method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.