Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.
Treating infections caused by multidrug-resistant Gram-negative pathogens is challenging, and there is concern regarding the toxicity of the most effective antimicrobials for Gram-negative pathogens. We hypothesized that conjugating a fatty acid moiety onto a peptide dimer could maximize the interaction with lipopolysaccharide (LPS) and facilitate the permeabilization of the LPS barrier, thereby improving potency against Gram-negative pathogens. We systematically designed a series of N-lipidated peptide dimers that are active against Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE). The optimized lipid length was 6-10 carbons. At these lipid lengths, the N-lipidated peptide dimers exhibited strong LPS permeabilization. Compound 23 exhibited synergy with select antibiotics in most of the combinations tested. 23 and 32 also displayed rapid bactericidal activity. Importantly, 23 and 32 were nonhemolytic at 10 mg/mL, with no cellular or in vivo toxicity. These characteristics suggest that these compounds can overcome the limitations of current Gram-negative-targeted antimicrobials such as polymyxin B.
Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to posttranscriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm 5 U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.