In this paper, we describe an image processing scheme to analyze and determine areas of skin that have undergone repigmentation in particular, during the treatment of vitiligo. In vitiligo cases, areas of skin become pale or white due to the lack of skin pigment called melanin. Vitiligo treatment causes skin repigmentation resulting in a normal skin color. However, it is difficult to determine and quantify the amount of repigmentation visually during treatment because the repigmentation progress is slow and moreover changes in skin color can only be discerned over a longer time frame typically 6 months. Here, we develop a digital image analysis scheme that can identify and determine vitiligo skin areas and repigmentation progression on a shorter time period. The technique is based on principal component analysis and independent component analysis which converts the RGB skin image into a skin image that represent skin areas due to melanin and haemoglobin only, followed by segmentation process. Vitiligo skin lesions are identified as skin areas that lack melanin (non-melanin areas). In the initial studies of 4 patients, the method has been able to quantify repigmentation in vitiligo lesion. Hence it is now possible to determine repigmentation progression objectively and treatment efficacy on a shorter time cycle.
Emotion is a crucial aspect of human health, and emotion recognition systems serve important roles in the development of neurofeedback applications. Most of the emotion recognition methods proposed in previous research take predefined EEG features as input to the classification algorithms. This paper investigates the less studied method of using plain EEG signals as the classifier input, with the residual networks (ResNet) as the classifier of interest. ResNet having excelled in the automated hierarchical feature extraction in raw data domains with vast number of samples (e.g., image processing) is potentially promising in the future as the amount of publicly available EEG databases has been increasing. Architecture of the original ResNet designed for image processing is restructured for optimal performance on EEG signals. The arrangement of convolutional kernel dimension is demonstrated to largely affect the model’s performance on EEG signal processing. The study is conducted on the Shanghai Jiao Tong University Emotion EEG Dataset (SEED), with our proposed ResNet18 architecture achieving 93.42% accuracy on the 3-class emotion classification, compared to the original ResNet18 at 87.06% accuracy. Our proposed ResNet18 architecture has also achieved a model parameter reduction of 52.22% from the original ResNet18. We have also compared the importance of different subsets of EEG channels from a total of 62 channels for emotion recognition. The channels placed near the anterior pole of the temporal lobes appeared to be most emotionally relevant. This agrees with the location of emotion-processing brain structures like the insular cortex and amygdala.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.