Background/Aims: Photoperiod is a major environmental cue in temperate-zone birds which synchronizes breeding with the time of year that offers the optimal environment for offspring survival. Despite continued long photoperiods, these birds eventually become refractory to the stimulating photoperiod and their reproductive systems regress. In this study, we characterized the role of γ-aminobutyric acid (GABA)ergic neurotransmission in modulating the response of the premammillary nucleus (PMM) to a gonad stimulatory photoperiod and the onset of photorefractoriness. Methods and Results: Bilateral ablation of the PMM blocked the light-induced neuroendocrine response from occurring in photosensitive turkeys. Microarray analyses revealed an increase in GABAergic activity in the PMM of photorefractory birds as opposed to photosensitive ones, and this enhanced GABAergic activity appeared to inhibit the photoperiodic signal. Additionally, GABAA and GABAB receptors were expressed by dopamine-melatonin neurons in the PMM, and the administration of the GABA receptor agonist baclofen blocked the photoperiodic reproductive neuroendocrine responses. Conclusions: Consistent with the present findings, we propose that the long-sought-after mechanism underlying photorefractoriness is linked to the inhibitory actions of GABA. We suggest that (1) GABAergic interference with photoperiodic entrainment in the PMM initiates the photorefractory state and terminates the annual breeding season in temperate-zone birds, and (2) the PMM is a site of photoreception and photorefractoriness that controls the initiation and termination of avian reproductive seasonality.
The premammillary nucleus (PMM) of the turkey mediobasal hypothalamus, where dopamine-melatonin (DA-Mel) neurons are localized, is a site for photoreception and photoperiodic time measurement, which is essential for the initiation of avian reproductive seasonality. In addition, this area could also be responsible for the onset and maintenance of photorefractoriness at the end of the breeding season due to the enhanced inhibitory effect of γ-aminobutyric acid (GABA). GABA is an inhibitory neurotransmitter in the central nervous system which interferes with the photosexual response in the turkey, a seasonally breeding bird. Here, we further characterized the GABAA receptor subunits in the PMM DA-Mel neurons related to reproductive seasonality and the onset of photorefractoriness. GABAA receptor subunits and GABA synthesis enzymes in the PMM of photosensitive and photorefractory turkey hens were identified using real-time qRT-PCR. The upregulation of GABAA receptor α1-3, β2-3, γ1-3, ρ1-3, δ, and θ mRNA expression were observed in the PMM of photorefractory birds when compared to those of photosensitive ones while there is no change observed in the GABA synthesis enzymes, glutamate decarboxylase 1 and 2. Those upregulated GABAA receptor subunits were further examined using immunohistochemical staining and they appeared to be co-localized within the PMM DA-Mel neurons. The upregulation of GABAA receptor subunits observed in the PMM of photorefractory birds coincides with a lack of responsiveness to a light stimulus provided during the photosensitive phase. This is supported by the absence of c-fos induction and TH upregulation in the PMM and a subsequence inhibition of c-fos and GnRH-I expression in the nucleus commissurae pallii. The augmented GABAA receptor subunits expression may mediate an enhancement of inhibitory GABAergic neurotransmission and the subsequent interference with the photosexual response. This could contribute to the state of photorefractoriness and the termination of breeding activities in the turkey, a temperate zone bird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.