Nanogel-based systems loaded with single anticancer drugs display miscellaneous effectiveness in tumor remission, gradually circumventing mutation and resistance in chemotherapy. Hence, the existence of dual-drug delivered nano-sized systems has been contemporaneous with drug development and preceded the conventional-dose chemotherapy. Among outstanding synergistic drug nanoplatforms, thermosensitive copolymer heparin-Pluronic F127 (Hep-F127) co-delivering cisplatin (CDDP) and curcumins (Cur) (Hep-F127/CDDP/Cur) has emerged as a notable candidate for temperature-responsive drug delivery. The procedure was based on the entrapment of curcumin into the hydrophobic core of bio-degradable co-polymer Hep-F127 while the hydrophilic drug CDDP subsequently conjugated to the backbone heparin to form the core-shell structure. The copolymer was characterized by Fourier transform infrared (FT-IR) spectrophotometry, Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), to corroborate the successful synthesis and via HPLC along with AES-ICP to evaluate the high drug loading along with a controllable release from the nano-gels. A well-defined nano-shell with size in the 129.3 ± 3.8 nm size range could enhance higher the efficacy of the conjugated-CDDP to Hep-F127 than that of single doses. Moreover, the considerable amount of dual-drug released from thermosensitive nanogels between different conditions (pH = 7.4 and pH = 5.5) in comparison to CDDP from Hep-F127 partially indicated the significantly anti-proliferative ability of Hep-F127/CDDP/Cur to the MCF-7 cell line. Remarkably, drug testing in a xenograft model elucidates the intricate synergism of co-delivery in suppressing tumor growth, which remedies some of the problems affecting in cancer chemotherapy.
Regeneration of dentin tissues in the pulp space of teeth serves the ultimate goal of preserving teeth via endodontic approaches. In recent times, many studies suggested that human dentin scaffolds combined with dental stem cells was a potential strategy for the complete dentin tissue regeneration. In this study, human dental pulp stem cells (DPSCs) were isolated and cultured. Dentin specimens were prepared from human third molars and treated with ethylene diamine tetra-acetic acid and citric acid to remove the smear layer. Then, DPSCs were cultured onto human treated dentin (hTD) and implanted in mouse model for 4, 6 and 8 weeks. The resulting grafts were assessed by hematoxylin and eosin stain and immunohistochemical stains. As a result, DPSCs were supported and induced to regenerate of dentin-like tissues which expressed specific dentin markers such as dentin sialophosphoprotein and dentin matrix protein 1 by combination with hTD in vivo. Furthermore, cells existed in the newly-formed dentin-like tissues also expressed typical human mitochondria antibodies, demonstrated that new tissues originated from human. In conclusion, the obtain results extend hopefully newly-established therapy to apply in endodontics and traumatic dental hard tissues.
Periodontal ligament (PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support the teeth in situ and preserve tissue homeostasis. Recent studies have revealed the existence of stem cells in human dental tissues including periodontal ligament that play an important role, not only in the maintenance of the periodontium but also in promoting periodontal regeneration. In this study, human periodontal ligament cells (hPDLCs) were isolated by outgrowth and enzymatic dissociation methods. Expression of surface markers on PDLCs as human mesenchymal stem cells (MSCs) was identified by flow cytometry. In addition, proliferation and differentiation capacity of cultured cells to osteoblasts, adipocytes were evaluated. As a result, we successfully cultured cells from the human periodontal ligament tissues. PDLCs express mesenchymal stem cell (MSC) markers such as CD44, CD73, and CD90 and do not express CD34, CD45, and HLA-DR. PDLCs also possess the multipotential to differentiate into various types of cells, such as osteoblast and adipocytes, in vitro. Therefore, these cells have high potential to serve as materials for tissue engineering, especially dental tissue engineering.
Scaffold is an important component of tissue engineering. Dentin is a potential material satisfying not only the physical and chemical characteristics of a standard scaffold, but also the inductive factors demand for dentin regeneration. Therefore, it is a promising material for tissue engineering. In this study, we aimed to create and characterize dentin scaffolds in order to serve as bioactive scaffolds for human dental pulp stem cells (hDPSCs) toward dentin-like tissue regeneration. Human dentin scaffolds were obtained from extracted teeth and irrigated in 17% ethylenediaminetetraacetic acid (EDTA) and 19% citric acid as chelate agents to remove smear layer. The treated scaffolds were examined morphology, the presence and secretion of dentin matrix protein, and in vitro cytotoxicity. The results demonstrated that 17% EDTA and 19% acid citric effectively removed smear layer. The presence of dentin matrix proteins, including transforming growth factor beta-1 and dentin matrix protein-1 were found to be secreted from human treated dentin scaffolds (hTDSs) during 5 days of investigation. hTDSs showed low level of cytotoxicity, which elicited a safe manner. Moreover, hTDSs provided a suitable surface for the attachment of hDPSCs, as well as supported their proliferation. When culturing hDPSCs onto the scaffolds, the formation of dentin-like tissue indicated their potential in directing differentiation of hDPSCs into dentin regeneration process, possibly, via bioactivity of the secreted dentin matrix proteins. Taken together, these data demonstrated that our proposed protocol was effective in generating hTDSs, and maintaining their compromising properties for application in regeneration of human dentin.Tissue Eng Regen Med 2015;12(4):222-230
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.