This study presents a numerical model for buckling analysis of the functionally graded sandwich plates (FGSP) laid on the elastic foundation through the Moving Kriging interpolation-based meshless method using a refined quasi-3D third-order shear deformation theory. The in-plane displacements encompassed a new third-order polynomial in terms of the thickness coordinate, will satisfy the natural vanishing of transverse shear stresses on the top and bottom surfaces. Furthermore, the displacement fields approximated by only four variables with accounting for the thickness stretching effect can lead to the reduction of computational time. Comparison investigations are studied to justify the accuracy of the present method. The influence of the aspect ratios, gradient index, and elastic foundation parameters on the normalized buckling load of FGSP is also studied and discussed.
This paper presents a numerical approach for static bending and free vibration analysis of the functionally graded porous plates (FGPP) resting on the elastic foundation using the refined quasi-3D sinusoidal shear deformation theory (RQSSDT) combined with the Moving Kriging–interpolation meshfree method. The plate theory considers both shear deformation and thickness-stretching effects by the sinusoidal distribution of the in-plane displacements, satisfies the stress-free boundary conditions on the top and bottom surfaces of the plate without shear correction coefficient. The advantage of the plate theory is that the displacement field of plate is approximated by only four variables leading to reduce computational efforts. Comparison studies are performed for the square FGPP with simply supported all edges to verify the accuracy of the present approach. The effect of the aspect ratio, volume fraction exponent, and elastic foundation parameters on the static deflections and natural frequency of FGPP are also investigated and discussed.
Keywords:
meshless method; Moving Kriging interpolation; refined quasi-3D theory; porous functionally\break graded plate; Pasternak foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.