Modulation of band bending at a complex oxide heterointerface by a ferroelectric layer is demonstrated. The as-grown polarization (Pup ) leads to charge depletion and consequently low conduction. Switching the polarization direction (Pdown ) results in charge accumulation and enhances the conduction at the interface. The metal-insulator transition at a conducting polar/nonpolar oxide heterointerface can be controlled by ferroelectric doping.
In this study, direct observation of the evolution of electronic structures across complex oxide interfaces has been revealed in the LaAlO(3)/SrTiO(3) model system using cross-sectional scanning tunneling microscopy and spectroscopy. The conduction and valence band structures across the LaAlO(3)/SrTiO(3) interface are spatially resolved at the atomic level by measuring the local density of states. This study directly maps out the electronic reconstructions and a built-in electric field in the polar LaAlO(3) layer. Results also clearly reveal the band bending and the notched band structure in the SrTiO(3) adjacent to the interface.
The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.
A new way to induce a large magnetoresistance has been achieved by self-assembled nanostructures consisting of ferromagnetic spinel CoFe₂O₄ (CFO) and metallic perovskite SrRuO₃ (SRO). The interdiffused Fe³⁺ ions in SRO have paved the way to strong magnetic couplings with CFO nanopillars, resulting in the suppression of spin-polarized electron scattering.
Magnetoelectric materials have great potential to revolutionize electronic devices due to the coupling of their electric and magnetic properties. Thickness varying La 0.7 Sr 0.3 MnO 3 (LSMO)/ PbZr 0.2 Ti 0.8 O 3 (PZT) heterostructures were built and measured in this article by valence sensitive x-ray absorption spectroscopy. The sizing effects of the heterostructures on the LSMO/PZT magnetoelectric interfaces were investigated through the behavior of Mn valence, a property associated with the LSMO magnetization. We found that Mn valence increases with both LSMO and PZT thickness. Piezoresponse force microscopy revealed a transition from monodomain to polydomain structure along the PZT thickness gradient. The ferroelectric surface charge may change with domain structure and its effects on Mn valence were simulated using a two-orbital double-exchange model. The screening of ferroelectric surface charge increases the electron charges in the interface region, and greatly changes the interfacial Mn valence, which likely plays a leading role in the interfacial magnetoelectric coupling. The LSMO thickness dependence was examined through the combination of two detection modes with drastically different attenuation depths. The different length scales of these techniques' sensitivity to the atomic valence were used to estimate the depth dependence Mn valence. A smaller interfacial Mn valence than the bulk was found by globally fitting the experimental results. V C 2015 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.