This paper proposes a second order sliding mode controller combined with signal set calibrator for overhead crane tracking desired position and resisting disturbance. High order sliding mode controller ensures that the overhead crane tracks desired trajectory and resists disturbance. Neural network is trained by particle swarm optimization algorithm (PSO) to compensate anti-sway for load. The results on the computer simulation show that high order sliding mode controller with anti-sway compensation for overhead crane tracks desired trajectory and the swing of load that is smaller than high order sliding mode controller without anti-sway compensation.
This paper proposes a second order sliding mode controller combined with signal set calibrator for overhead crane tracking desired position and resisting disturbance. High order sliding mode controller ensures that the overhead crane tracks desired trajectory and resists disturbance. Neural network is trained by particle swarm optimization algorithm (PSO) to compensate anti-sway for load. The results on the computer simulation show that high order sliding mode controller with anti-sway compensation for overhead crane tracks desired trajectory and the swing of load that is smaller than high order sliding mode controller without anti-sway compensation.Keywords: high order sliding mode control, artificial neural network, particle swarm optimization algorithm (PSO), anti-sway for overhead crane.
This paper proposes a second order sliding mode controller combined with signal set calibrator for overhead crane tracking desired position and resisting disturbance. High order sliding mode controller ensures that the overhead crane tracks desired trajectory and resists disturbance. Neural network is trained by particle swarm optimization algorithm (PSO) to compensate anti-sway for load. The results on the computer simulation show that high order sliding mode controller with anti-sway compensation for overhead crane tracks desired trajectory and the swing of load that is smaller than high order sliding mode controller without anti-sway compensation.
This paper proposes a controller design method to stabilize a class of nonlinear, non-autonomous second-order systems in finite time. This method is developed based on exact-linearization and Pontryagin’s minimum time principle. It is shown that the system can be stabilized in a finite time of which the upper bound can be chosen according to the initial states of the system. Simulation results are given to validate the theoretical analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.