Reordering is a major challenge in machine translation (MT) between two languages with significant differences in word order. In this paper, we present an approach as pre-processing step based on a dependency parser in phrase-based statistical machine translation (SMT) to learn automatic and manual reordering rules from English to Vietnamese. The dependency parse tree and transformation rules are used to reorder the source sentences and applied for systems translating English to Vietnamese. We evaluated our approach and compared on English-Vietnamese machine translation tasks, and showed that it outperforms the baseline phrase-based SMT system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.