Fibroblast growth factor-1 (FGF1) and FGF2 play a critical role in angiogenesis, a formation of new blood vessels from existing blood vessels. Integrins are critically involved in FGF signaling through crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and induces FGF receptor-1 (FGFR1)-FGF1-integrin αvβ3 ternary complex. We previously generated an integrin binding defective FGF1 mutant (Arg-50 to Glu, R50E). R50E is defective in inducing ternary complex formation, cell proliferation, and cell migration, and suppresses FGF signaling induced by WT FGF1 (a dominant-negative effect) in vitro. These findings suggest that FGFR and αvβ3 crosstalk through direct integrin binding to FGF, and that R50E acts as an antagonist to FGFR. We studied if R50E suppresses tumorigenesis and angiogenesis. Here we describe that R50E suppressed tumor growth in vivo while WT FGF1 enhanced it using cancer cells that stably express WT FGF1 or R50E. Since R50E did not affect proliferation of cancer cells in vitro, we hypothesized that R50E suppressed tumorigenesis indirectly through suppressing angiogenesis. We thus studied the effect of R50E on angiogenesis in several angiogenesis models. We found that excess R50E suppressed FGF1-induced migration and tube formation of endothelial cells, FGF1-induced angiogenesis in matrigel plug assays, and the outgrowth of cells in aorta ring assays. Excess R50E suppressed FGF1-induced angiogenesis in chick embryo chorioallantoic membrane (CAM) assays. Interestingly, excess R50E suppressed FGF2-induced angiogenesis in CAM assays as well, suggesting that R50E may uniquely suppress signaling from other members of the FGF family. Taken together, our results suggest that R50E suppresses angiogenesis induced by FGF1 or FGF2, and thereby indirectly suppresses tumorigenesis, in addition to its possible direct effect on tumor cell proliferation in vivo. We propose that R50E has potential as an anti-cancer and anti-angiogenesis therapeutic agent (“FGF1 decoy”).
Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury.
Hypertrophic scars result from a dysregulated process in wound healing. Although the basic mechanism is unclear, increased proliferation and decreased cell apoptosis are noticed in the development of hypertrophic scar. In previous study, we found that secreted frizzled-related protein 2 (SFRP2), which was associated with cell proliferation, apoptosis, and differentiation, was dramatically upregulated in hypertrophic scar (HS) tissue. In this study short hairpin RNA (shRNA) targeting SFRP2 was employed to characterize SFRP2 function in hypertrophic scar-derived fibroblasts (HSFb). Cell proliferation was assessed by MTT, dynamic growth curves, and BRDU assays. Meanwhile, Cell apoptosis was detected using fluorescence-activated cell sorting (FACS). Caspase-3 activity was assayed by spectrophotometry. Fibroblast populated collagen lattice (FPCL) model was employed to evaluate the contractility of HSFb. Further, real-time PCR and western blot were used to measure the mRNA and protein expressions of α-SMA in HSFb. In addition, mRNA levels of type I and III procollagen were assayed by quantitative real-time PCR. The results revealed that shRNA targeting SFRP2 significantly promoted the apoptosis of HSFb, while it had no effect on the cell proliferation. Decreased synthesis of a-smooth muscle actin (α-SMA) in HSFb and reduced contraction of fibroblasts in the FPCL model were observed. Quantitative RT-PCR suggested that the mRNAs of type I and III procollagen were significantly downregulated. In conclusion, as a novel anti-apoptosis gene, SPRP2 was present in hypertrophic scars. Importantly, shRNA targeting SFRP2 may provide a new approach to preventing the formation of HS.
Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous wound electric field (∼100 mV/mm) that is directed towards the center of the wound. This endogenous electric field is implicated to enhance wound healing by guiding cell migration. We thus seek techniques to enhance the TEP, which may increase the wound electric fields and enhance wound healing. We report a novel technique, termed synchronization modulation (SM) using a train of electric pulses to synchronize the Na/K pump activity, and then modulating the pumping cycles to increase the efficiency of the Na/K pumps. Kidney epithelial monolayers (MDCK cells) maintain a stable TEP and transepithelial resistance (TER). SM significantly increased TEP over four fold. Either ouabain or digoxin, which block Na/K pump, abolished SM-induced TEP increases. In addition to the pump activity, basolateral distribution of Na/K pumps is essential for an increase in TEP. Our study for the first time developed an electrical approach to significantly increase the TEP. This technique targeting the Na/K pump may be used to modulate TEP, and may have implication in wound healing and in diseases where TEP needs to be modulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.