Despite the promising features of neural interfaces, their trade-off between information transfer and invasiveness has limited translation and viability outside research settings. Here, we present a non-invasive neural interface that provides access to spinal motoneuron activities from a sensor band at the wrist. The interface decodes electric signals present at the tendon endings of the forearm muscles by using a model of signal generation and deconvolution. First, we evaluated the reliability of the interface to detect motoneuron firings, and thereafter we used the decoded neural activity for the prediction of finger movements in offline and real-time conditions. The results showed that motoneuron activity decoded from the wrist accurately predicted individual and combined finger commands and therefore allowed for highly accurate real-time control. These findings demonstrate the feasibility of a wearable, non-invasive, neural interface at the wrist for precise real-time control based on the output of the spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.