We present a practical and efficient approach to incorporating privacy policy enforcement into an existing application and database environment, and we explore some of the semantic tradeoffs introduced by enforcing these privacy policy rules at cell-level granularity. Through a comprehensive set of performance experiments, we show that the cost of privacy enforcement is small, and scalable to large databases.
We propose new adaptive runtime techniques for MapReduce that improve performance and simplify job tuning. We implement these techniques by breaking a key assumption of MapReduce that mappers run in isolation. Instead, our mappers communicate through a distributed meta-data store and are aware of the global state of the job. However, we still preserve the fault-tolerance, scalability, and programming API of MapReduce. We utilize these "situationaware mappers" to develop a set of techniques that make MapReduce more dynamic: (a) Adaptive Mappers dynamically take multiple data partitions (splits) to amortize mapper start-up costs; (b) Adaptive Combiners improve local aggregation by maintaining a cache of partial aggregates for the frequent keys; (c) Adaptive Sampling and Partitioning sample the mapper outputs and use the obtained statistics to produce balanced partitions for the reducers. Our experimental evaluation shows that adaptive techniques provide up to 3× performance improvement, in some cases, and dramatically improve performance stability across the board.
Enterprises are adapting large-scale data processing platforms, such as Hadoop, to gain actionable insights from their "big data". Query optimization is still an open challenge in this environment due to the volume and heterogeneity of data, comprising both structured and un/semi-structured datasets. Moreover, it has become common practice to push business logic close to the data via userdefined functions (UDFs), which are usually opaque to the optimizer, further complicating cost-based optimization. As a result, classical relational query optimization techniques do not fit well in this setting, while at the same time, suboptimal query plans can be disastrous with large datasets.In this paper, we propose new techniques that take into account UDFs and correlations between relations for optimizing queries running on large scale clusters. We introduce "pilot runs", which execute part of the query over a sample of the data to estimate selectivities, and employ a cost-based optimizer that uses these selectivities to choose an initial query plan. Then, we follow a dynamic optimization approach, in which plans evolve as parts of the queries get executed. Our experimental results show that our techniques produce plans that are at least as good as, and up to 2x (4x) better for Jaql (Hive) than, the best hand-written left-deep query plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.