This article presents a simple, eco-friendly, and green method for the synthesis of silver nanoparticles (AgNPs) from AgNO3 solution utilizing an aqueous extract of Callisia fragrans leaf. The effects of C. fragrans leaf extraction conditions were evaluated. Parameters affecting the synthesis of AgNPs, such as the volume of extract, pH, temperature, and reaction time were investigated and optimized. The obtained AgNPs were analyzed by UV–Vis spectroscopy, X-ray diffraction pattern, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and FTIR techniques. TEM and DLS analyses have shown that the synthesized AgNPs were predominantly spherical in shape with an average size of 48 nm. The zeta potential of the colloidal solution of AgNPs is −27 mV, indicating the dispersion ability of AgNPs. The results of GC–MS and FTIR analyses show the presence of biomolecules in the aqueous extract of C. fragrans leaf that acts as reducing and capping agents for the biosynthesis of AgNPs. The synthesized AgNPs demonstrate anticancer activity against MCF-7, HepG2, KB, LU-1, and MKN-7 cell lines, with inhibitory concentrations at 50% (IC50 values) of 2.41, 2.31, 2.65, 3.26, and 2.40 µg·mL−1, respectively. The obtained results in the study show that the biosynthesized AgNP from C. fragrans leaf extract can be further exploited as a potential candidate for anticancer agents.
Biochar supported nickel (Ni/biochar) catalyst was prepared by incipient wetness method and characterized by using a series of techniques such as XRD, SEM, TEM, FT-IR, H 2 -TPR and BET. These charaterizations indicated the catalyst structure and demonstrated its potential for applications in reduction -oxidation reactions in particular the HDO process.
Mesoporous oxo -phosphated sulfated zirconia (m-PSZ) were applied for converting vegetable oil deodorizer distillate to biodiesel in one-step reaction. The catalyst possessed mesopores, high surface area and strong acid sites while the feedstock contained mainly free fatty acids. Many investigations were established for finding the most suitable conditions of the biodiesel synthesis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.