Background Risedronate is a bisphosphonate with poor oral absorption. An extremely hydrophilic molecule that has a high affinity for bone, risedronate also inhibits the farnesyl diphosphate synthase enzyme, inhibiting osteoclastic activity and reducing bone turnover and resorption. Autogenous bone grafts contain osteogenic cells and osteoinductive factors that are essential for bone regeneration and are therefore considered the gold standard. Thus, this study aimed to investigate the impact of local risedronate administered with autogenous bone grafts on the healing of defects in rabbit skulls using histological, histomorphometric, immunohistochemical, and three-dimensional radiological methods. Methods Two 10-mm-diameter critical-size defects were created in 16 rabbits and filled with autogenous bone graft and autogenous bone graft + 5 mg risedronate in the control (C) and risedronate (RIS) groups, respectively. Residual graft, new bone, soft tissue areas, and bone volume were evaluated in the 4- and 8-week study groups. Results There were no statistically significant differences in bone graft, new bone, or soft tissue area between the groups at 4 weeks (p > 0.05). At 8 weeks, the new bone area was significantly higher in the RIS group than in the C group (p < 0.05). The h scores obtained from sialoprotein and osteopontin did not differ significantly between the groups (p > 0.05). The radiologically measured total bone volume was significantly higher in the RIS group than in the C group at both time points (p < 0.05). Conclusions In this study, risedronate enhanced the osteoconductive properties of autogenous bone grafts and rapidly created better-quality bone. This could improve future patient outcomes.
Background Risedronate is a bisphosphonate with poor oral absorption. An extremely hydrophilic molecule that has a high affinity for bone, risedronate also inhibits the farnesyl diphosphate synthase enzyme, inhibiting osteoclastic activity and reducing bone turnover and resorption. Autogenous bone grafts contain osteogenic cells and osteoinductive factors that are essential for bone regeneration and are therefore considered the gold standard. Thus, this study aimed to investigate the impact of local risedronate administered with autogenous bone grafts on the healing of defects in rabbit skulls using histological, histomorphometric, immunohistochemical, and three-dimensional radiological methods. Methods Two 10-mm diameter critical-size defects were created in 16 rabbits and filled with autogenous bone graft and autogenous bone graft + 5 mg risedronate in the control (C) and risedronate (RIS) groups, respectively. Residual graft, new bone, soft tissue areas, and bone volume were evaluated in the 4- and 8-week study groups. Results There were no statistically significant differences in bone graft, new bone, or soft tissue area between the groups at 4 weeks (p > 0.05). At 8 weeks, the new bone area was significantly higher in the RIS group than in the C group (p < 0.05). The h scores obtained from sialoprotein and osteopontin did not differ significantly between the groups (p > 0.05). The radiologically measured total bone volume was significantly higher in the RIS group than in the C group at both time points (p < 0.05) Conclusions In this study, risedronate enhanced the osteoconductive properties of autogenous bone grafts and rapidly created better-quality bone. This could improve future patient outcomes.
Background To examine the effects of local risedronate application with xenografts on healing of rabbit skull defects using histological, histomorphometric, immunohistochemical, and three-dimensional radiological methods. Methods Two critical-sized defects with a diameter of 10 mm were created in 16 rabbits and filled with xenogenic bone graft and xenogenic bone graft + 5 mg risedronate in the control I and risedronate (RIS) groups, respectively. Residual graft, new bone, soft tissue areas, and bone volume were evaluated in the 4- and 8-week study groups. Results In both the 4- and 8-week samples, the RIS group samples had significantly higher mean new bone area values than the C group (p < 0.05). In both groups, the values for the new bone area were significantly higher in the 8-week-old samples than in the 4-week-old samples (p < 0.05). The h scores obtained for sialoprotein and osteopontin did not differ significantly between the groups at either time point (p > 0.05). The results of radiological evaluation showed that the bone density value was significantly higher in the C group than in the RIS group at either time point (p < 0.05). Conclusions Although this study aimed to demonstrate the effect of risedronate on the osteoconductive properties of xenografts when applied locally, targeted results could not be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.