a b s t r a c tThe new wide-field radio telescopes, such as: ASKAP, MWA, LOFAR, eVLA and SKA; will produce spectralimaging data-cubes (SIDC) of unprecedented size-in the order of hundreds of Petabytes. Servicing such data as images to the end-user in a traditional manner and formats is likely going to encounter significant performance fallbacks. We discuss the requirements for extremely large SIDCs, and in this light we analyse the applicability of the approach taken in the JPEG2000 (ISO/IEC 15444) standards. We argue the case for the adaptation of contemporary industry standards and technologies versus the modification of legacy astronomy standards or development of new standards specific to astronomy only.
The sheer volume of data anticipated to be captured by future radio telescopes, such as, The Square Kilometer Array (SKA) and its precursors present new data challenges, including the cost and technical feasibility of data transport and storage. Image and data compression are going to be important techniques to reduce the data size. We provide a quantitative analysis of the effects of JPEG2000's lossy wavelet image compression algorithm on the quality of the radio astronomy imagery data. This analysis is completed by evaluating the completeness, soundness and source parameterisation of the Duchamp source finder using compressed data. Here we found the JPEG2000 image compression has the potential to denoise image cubes, however this effect is only significant at high compression rates where the accuracy of source parameterisation is decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.