The reduction of 6,12-dichloro-1,2,3,4,7,8,9,10-octahydro-6H,12H-[1,2,3]benzodiazaphospholo[2,1-a][1,2,3]benzodiazaphosphole (3) by metallic magnesium in tetrahydrofuran (THF) affords the N,N'-fused bisphosphole 1 in 92% yield. The compound reveals a novel type of 10π-electron heteroaromatic system [NICS(0) = -11.4], containing a two-coordinate and formally divalent phosphorus atom. Compound 1 possesses a much higher coordination activity than many other diazaphospholes. This is caused by a novel type of complexation to a metal ion wherein the lone phosphorus pairs are not involved in metal coordination. Instead, the 10π-electron heteroaromatic system provides two electrons for P → M bond formation. Polarization of the ligand results in the formation of extended molecular associates or cluster compounds. Complexes of 1 with mercury dichloride [{(1)3HgCl}2(μ6-Cl)](+)Cl(-) (7) and tin dichlorides [1·SnCl2(PhMe solvate)] (8a) and [1·SnCl2] (8b) are, in fact, supramolecular in nature, containing multiple intermolecular short contacts. Crystals of complex 8a containing short Sn···Sn packing interactions were converted reversibly to metallic tin after workup with THF. The simple mixing of 1 and 3 (1:1) gave a P-P bridging dimeric species prone to easy dissociation. The addition of GeCl2(diox) to the equimolar mixture of 1 and 3 shifted the equilibrium to the formation of a poorly soluble salt-like dimer 6, which is, in fact, a stacked 18π-electron dication having a through-space delocalization of π electrons.
Hydrazine dihydrochloride reacts with 3 equiv of Ph2PCl in tetrahydrofuran in the presence of triethylamine to give tris(diphenylphosphino)hydrazine (1) in 70% yield. Each nitrogen atom in 1 has a trigonal-planar environment according to X-ray analysis. Thermolysis of 1 at 130 degrees C results in the formation of two products: bis(diphenylphosphino)amine and octaphenylcyclotetraphosphazene. The interaction of free ligand 1 with NiBr2 affords a simple adduct [(Ph2P)2N-NH-PPh2]NiBr2, while its anionic (hydrazide) form undergoes rearrangement in a coordination sphere of divalent cobalt and nickel involving migratory insertion of the Ph2P group into a nitrogen-nitrogen bond. The reaction of 1 with cobalt bis(trimethylsilyl)amide, [(Me3Si)2N]2Co, yields the complex of phosphazenide-type (Me3Si)2N-Co[(Ph2PN)2PPh2] (2) in 86% yield. A similar reaction of 1 with nikelocene proceeds with substitution of one Cp ring to form durable 18-electron complex CpNi[(Ph2PN)2PPh2] (3).
A number of novel phosphinohydrazines, iPr(2)P-NPh-NPh-H (1), iPr(2)P-NH-NH-PiPr(2) (2), iPr(2)P-NMe-NH-PiPr(2) (3), and H-NMe-NH-PiPr(2) (4), were prepared and characterized. The interaction of 1 with 1 equiv of n-BuLi afforded a complex compound [Li(DME)(3)][Li{(NPh-NPh-PiPr(2))-kappaN}(2)] (5). The reaction of 5 with NiBr(2) resulted in the formation of the first stable transition metal phosphinohydrazide [Ni{(NPh-NPh-PiPr(2))-kappa(2)N,P}(2)] (6). Similarly, the cobalt(II) derivative [Co{(NPh-NPh-PiPr(2))-kappa(2)N,P}(2)] (7) was prepared by the reaction of 1 with Co[N(SiMe(3))(2)](2). An X-ray study reveals formation of the complexes containing elongated N-N bonds (1.443(1), 1.466(2), and 1.470(2) A for 5, 6, and 7, respectively) as compared with the starting material 1 (1.407(1) A). Nickel phosphinohydrazide 6 has a square-planar cis configuration; the cobalt complex 7 possesses a square-planar centrosymmetric trans configuration. The half-sandwich nickel(II) complex [CpNi{(NPh-NPh-PiPr(2))-kappa(2)N,P}] (8) was prepared by prolonged heating of phosphinohydrazine 1 with NiCp(2) in toluene. The lithiation of 3 with n-BuLi resulted in the formation of an iminophosphoranate [LiN=PiPr(2)-NMe-PiPr(2)] (13) (in situ), which is the product of insertion of a PiPr(2) group into the nitrogen-nitrogen bond. The hydrolysis of 13 followed by the addition of CoCl(2) gave the phosphino-iminophosphoranato complex [CoCl(2){(HN=PiPr(2)-NMe-PiPr(2))-kappa(2)N,P}] (15) according to X-ray investigation. The phosphinohydrazine 3 reacted with FeX(2) in toluene to form adducts (1:1) [FeX(2){(PiPr(2)-NMe-NH-PiPr(2))-kappa(2)P,P'}] (X = Cl (9), Br (10)), while CoCl(2) gave the complex salt [{Co(PiPr(2)-NMe-NH-PiPr(2))-kappa(2)P,P'}(2)(mu-Cl)(3)][CoCl(3)(THF)] (11). A THF solution of complex 11 shows thermochromic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.