Hepatitis B virus (HBV) chronically infects 400 million people worldwide and is a leading driver of end-stage liver disease and liver cancer. Research into the biology and treatment of HBV requires an in vitro cell-culture system that supports the infection of human hepatocytes, and accurately recapitulates virus-host interactions. Here, we report that micropatterned cocultures of primary human hepatocytes with stromal cells (MPCCs) reliably support productive HBV infection, and infection can be enhanced by blocking elements of the hepatocyte innate immune response associated with the induction of IFN-stimulated genes. MPCCs maintain prolonged, productive infection and represent a facile platform for studying virus-host interactions and for developing antiviral interventions. Hepatocytes obtained from different human donors vary dramatically in their permissiveness to HBV infection, suggesting that factors-such as divergence in genetic susceptibility to infection-may influence infection in vitro. To establish a complementary, renewable system on an isogenic background in which candidate genetics can be interrogated, we show that inducible pluripotent stem cells differentiated into hepatocyte-like cells (iHeps) support HBV infection that can also be enhanced by blocking interferon-stimulated gene induction. Notably, the emergence of the capacity to support HBV transcriptional activity and initial permissiveness for infection are marked by distinct stages of iHep differentiation, suggesting that infection of iHeps can be used both to study HBV, and conversely to assess the degree of iHep differentiation. Our work demonstrates the utility of these infectious systems for studying HBV biology and the virus' interactions with host hepatocyte genetics and physiology.HBV persistence | innate immunity | viral hepatitis H epatitis B virus (HBV) is a small 3.2-kb DNA virus that selectively infects hepatocytes in the human liver (1). The global disease burden is large, with ∼400 million people chronically infected worldwide, of whom about one-third will develop severe HBV-related complications, such as cirrhosis and liver cancer. Lifelong treatment is often required because of the stable nature of viral episomal DNA, known as covalently closed circular DNA (cccDNA), which maintains basal levels in infected cell nuclei even upon nucleos(t)ide inhibitor treatment. To date, HBV research has been hampered by a distinct lack of robust infectious model systems that both support productive HBV infection and accurately mimic virus-host interactions. Recently, the bile acid pump sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a receptor for both HBV and hepatitis D virus (2), and overexpression of NTCP in hepatoma cell lines renders them susceptible to HBV infection. However, hepatoma cells are known to be defective in many cellular pathways implicated in the innate immune response (3, 4), metabolism (5), and cell proliferation (6), which may contribute to published contradictory evidence regarding the e...
Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, resulting in robust suppression of viral gene expression and replication. Upon sustained expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach to control the virus and possibly cure patients.
The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. We developed a method to photocage the activity of the guide RNA called ‘CRISPR-plus’ (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivatable capability of our CRISPR-plus method is compatible with simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic inquiries.
Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development.
In spite of the vast collective experience in tissue engineering, control of both tissue architecture and scale are fundamental translational roadblocks. An experimental framework that enables investigation into how architecture and scaling may be coupled is needed. Here, we introduce an approach called ‘SEEDs’ (‘in Situ Expansion of Engineered Devices’), in which we fabricate a structurally organized engineered tissue unit that expands in response to regenerative cues after implantation. We find that tissues containing pre-patterned human primary hepatocytes, endothelial cells, and stromal cells in degradable hydrogel expand over 50-fold over the course of 11 weeks in animals with liver injury, with concomitant increased function as characterized by the production of multiple human liver proteins. Histologically, we observe the emergence of stereotypical microstructure via coordinated growth of hepatocytes in close juxtaposition with a perfused, chimeric vasculature. Importantly, we demonstrate the utility of this platform for probing the impact of multicellular geometric architecture on tissue expansion in response to regenerative cues. This approach represents a hybrid strategy that harnesses both biology and engineering to deploy a limited cell mass more efficiently than either approach could do in isolation, and thus offers a new convergent paradigm for tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.