COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available, and investigations regarding COVID-19 treatment are lacking. Crystallised COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess drugs found in literature as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. The docking was cross-validated using Swiss Dock. COVID-19 Mpro was docked with several compounds, and docking was analysed by Biovia Discovery Studio 2020. Quinine and hydroxychloroquine were used as standards for comparison. The binding energies obtained from the docking of 6LU7, 2GTB with screened drugs viz., Quinine, Artesunate, Clotrimazol, Artemether, Quercetin, Mefloquine, ciprofloxacin, clindamycin, cipargamin, SJ-733 were in between -7.0 to -9.6 kcal/mol. On consideration of similar binding energy obtained from Autodock vina and SWISSDock and interaction residue pattern specifically (GLU 166,CYS 145, CYS44 and MET 49 residue) for SJ-733 & JPC-3210 may represent potential treatment options, and appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use against CoV.
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Corona is an avian and mammalian Ribovirus which generally evade host immune mechanism hampering respiratory tract of the host. Structurally it has an envelope of protein enclosing a single-stranded positively coiled RNA genome. Coronavirus uses around 4-5 different classes of protein for its replication in the host cell. Due to the high mutation rate of the viral genome development of a vaccine against corona has been a difficult task. In the current scenario, the world is facing a problem with CoViD-19 as the biggest pandemic. Several combinations of drugs like Hydroxychloroquine, Plaquine, Chloroquine, etc. targeting viral protein have been utilized for controlling viral infection. The possibility of insect brain proteins was checked against the selected non-structural proteins of CoViD-19 that take an active role in the replication of the virus in the host. Molecular docking methodology plays an important role in predicting interaction between the insect proteins with non-structural protein (nsp) of coronavirus. The results predict good bonding affinity with possible interaction as hydrogen bond and salt bridge between antibacterial protein and nsp of CoViD-19 indicating as afuture alternative medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.