We report experimental results on the low-frequency noise in GaN/AlGaN transistors fabricated under different conditions and evaluate different methods to extract the effective trap density using the McWhorter model. The effective trap density is found to be below 1019 cm−3 for some of the wafers. This trap density is of the same order of magnitude as that reported in Si MOSFETs with a high-k dielectric. One of the structures manifested about two orders of magnitude higher noise level. These measurements correlate with the results of secondary ion mass spectroscopy and terahertz electroluminescence measurements which indicated a ∼30% higher concentration of uncompensated oxygen in this structure. Effective trap density extracted from noise measurements is proven to be a very sensitive figure of merit parameter for the GaN/AlGaN field effect transistors and material quality assessment.
We report Schottky diodes (SDs) and High Electron Mobility Transistors (HEMTs) fabricated of 2DEG AlGaN/GaN structures grown by Metalorganic Chemical Vapour Phase Epitaxy (MOVPE) on sapphire substrate. The SDs and HEMTs were designed intentionally without surface passivation and were successfully fabricated at the Center for Physical Sciences and Technology (CPST), using standard UV photolithography procedures. The performance of Ohmic contacts formed of quaternary Ti/Al/Ni/Au stack was optimized varying the temperature of rapid thermal annealing process. Deposited on the semiconductor metal Ni/Au stack was used to form 0.75 eV height Schottky barriers. The fabricated SDs demonstrated low reverse current and high electric current switching ratio while the HEMTs showed high transconductance and drain saturation currents performance with good transistor channel closing. This work paves a way to develop advanced AlGaN/GaN based HEMT structures as well as new electronic components for operation at high powers and high frequencies.
This paper reports on the AlGaN/GaN Schottky diodes (SDs) and high-electron-mobility transistors (HEMTs) grown on a semi-insulating SiC substrate. The electronic devices demonstrate an improved performance in comparison with the ones processed on a sapphire substrate. Both the SDs and HEMTs show much smaller leakage current density and a higher I ON /I OFF ratio, reaching values down to 3.0±1.2 mA/cm 2 and up to 70 dB under the reverse electric field of 340 kV/cm, respectively. The higher thermal conductivity of the SiC substrate leads to the increase of steady current and transconductance, and better thermal management of the HEMT devices. In addition, a successful detection of terahertz (THz) waves with the AlGaN/GaN HEMT is demonstrated at room temperature. These results open further routes for the optimization of THz designs which may result in development of novel plasmonic THz devices.
We report on negative differential photovoltage (DPV), which is observed under modulated photoexcitation of a double heterojunction, when the common positive photovoltage increment due to photocurrent modulation is suppressed by high bias current. The negative DPV was shown to be due to the effect of photoconductivity on the series resistance of the heterojunction and due to the modulation of junction temperature. In AlGaInP double heterojunction light-emitting diodes, the magnitudes of negative DPV in the range of −10 μV correspond to the estimated variation of series resistance and junction temperature as low as ∼10−3 Ω and ∼10−2 K, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.