The mxi-spa locus on the virulence plasmid of Shigella flexneri encodes components of the type III secretion system. mxiE, a gene within this locus, encodes a protein that is homologous to the AraC/XylS family of transcriptional regulators, but currently its role in pathogenesis remains undefined. We characterized the virulence phenotype of a nonpolar mxiE mutant and found that this mutant retained the ability to invade mammalian cells in tissue culture and secrete Ipas (type III effectors required for host cell invasion), although it was less efficient than wild-type Shigella at cell-to-cell spread. Despite its invasive properties in culture, the mxiE mutant was completely avirulent in an animal model. Potential targets for MxiE activation were identified by using promoter-green fluorescent protein fusions, and gene expression was examined under various growth conditions. Six MxiE-regulated genes were discovered: ospB, ospC1, ospE2, ospF, virA, and ipaH 9.8 . Notably, activation of these genes only occurred within the intracellular environment of the host and not during growth at 37°C in liquid culture. Interestingly, all of the MxiE-regulated proteins previously have been shown to be secreted through the type III secretion system and are putative virulence factors. Our findings suggest that some of these Osp proteins may be involved in postinvasion events related to virulence. Since bacterial pathogens adapt to multiple environments during the course of infecting a host, we propose that Shigella evolved a mechanism to take advantage of a unique intracellular cue, which is mediated through MxiE, to express proteins when the organism reaches the eukaryotic cytosol.
The ability of Campylobacter jejuni to penetrate normally nonphagocytic host cells is believed to be a key virulence determinant. Recently, kinetics of C. jejuni intracellular survival have been described and indicate that the bacterium can persist and multiply within epithelial cells and macrophages in vitro. Studies conducted by Pesci et al. indicate that superoxide dismutase contributes to intraepithelial cell survival, as isogenic sod mutants are 12-fold more sensitive to intracellular killing than wild-type strains. These findings suggest that bacterial factors that combat reactive oxygen species enable the organism to persist inside host cells. Experiments were conducted to determine the contribution of catalase to C. jejuni intracellular survival. Zymographic analysis indicated that C. jejuni expresses a single catalase enzyme. The gene encoding catalase (katA) was cloned via functional complementation, and an isogenic katA mutant strain was constructed. Kinetic studies indicate that catalase provides resistance to hydrogen peroxide in vitro but does not play a role in intraepithelial cell survival. Catalase does however contribute to intramacrophage survival. Kinetic studies of C. jejuni growth in murine and porcine peritoneal macrophages demonstrated extensive killing of both wildtype and katA mutant strains shortly following internalization. Long-term cultures (72 h postinfection) of infected phagocytes permitted recovery of viable wild-type C. jejuni; in contrast, no viable katA mutant bacteria were recovered. Accordingly, inhibition of macrophage nitric oxide synthase or NADPH oxidase permitted recovery of katA mutant C. jejuni. These observations indicate that catalase is essential for C. jejuni intramacrophage persistence and growth and suggest a novel mechanism of intracellular survival.
The poly-␥-D-glutamic acid capsule confers antiphagocytic properties on Bacillus anthracis and is essential for virulence. In this study, we showed that CapD, a ␥-polyglutamic acid depolymerase encoded on the B. anthracis capsule plasmid, degraded purified capsule and removed the capsule from the surface of anthrax bacilli. Treatment with CapD induced macrophage phagocytosis of encapsulated B. anthracis and enabled human neutrophils to kill encapsulated organisms. A second glutamylase, PghP, a ␥-polyglutamic acid hydrolase encoded by Bacillus subtilis bacteriophage ⌽NIT1, had minimal activity in degrading B. anthracis capsule, no effect on macrophage phagocytosis, and only minimal enhancement of neutrophil killing. Thus, the levels of both phagocytosis and killing corresponded to the degree of enzyme-mediated capsule degradation. The use of enzymes to degrade the capsule and enable phagocytic killing of B. anthracis offers a new approach to the therapy of anthrax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.