The transformation of sensory signals as they pass through cortical circuits has been revealed almost exclusively through studies of the primary sensory cortices, where principles of laminar organization, local connectivity and parallel processing have been elucidated. In contrast, almost nothing is known about the circuitry or laminar features of multisensory processing in higher-order, multisensory cortex. Therefore, using the ferret higher-order multisensory rostral posterior parietal (PPr) cortex, the present investigation employed a combination of multichannel recording and neuroanatomical techniques to elucidate the laminar basis of multisensory cortical processing. The proportion of multisensory neurons, the share of neurons showing multisensory integration, and the magnitude of multisensory integration were all found to differ by layer in a way that matched the functional or connectional characteristics of the PPr. Specifically, the supragranular layers (L2–3) demonstrated among the highest proportions of multisensory neurons and the highest incidence of multisensory response enhancement, while also receiving the highest levels of extrinsic inputs, exhibiting the highest dendritic spine densities, and providing a major source of local connectivity. In contrast, layer 6 showed the highest proportion of unisensory neurons while receiving the fewest external and local projections and exhibiting the lowest dendritic spine densities. Coupled with a lack of input from principal thalamic nuclei and a minimal layer 4, these observations indicate that this higher-level multisensory cortex shows unique functional and organizational modifications from the well-known patterns identified for primary sensory cortical regions.
Despite the fact that unisensory and multisensory neurons are comingled in every neural structure in which they have been identified, no systematic comparison of their response features has been conducted. Towards that goal, the present study was designed to examine and compare measures of response magnitude, latency, duration and spontaneous activity in unisensory and bimodal neurons from the ferret parietal cortex. Using multichannel single-unit recording, bimodal neurons were observed to demonstrate significantly higher response levels and spontaneous discharge rates than did their unisensory counterparts. These results suggest that, rather than merely reflect different connectional arrangements, unisensory and multisensory neurons are likely to differ at the cellular level. Thus, it can no longer be assumed that the different populations of bimodal and unisensory neurons within a neural region respond similarly to a given external stimulus.
A somatotopically organized region on the suprasylvian gyrus of the ferret was examined using multiunit recordings and anatomical tracer injections. This area, which contains a representation of the face, was bordered by the primary somatosensory area (SI), anteriorly, and by the visually-responsive rostral posterior parietal cortex (PPr), posteriorly. Anatomical tracers revealed connections to this region from cortical areas MI, SI, MRSS, PPR and the thalamic posterior nucleus. These results are consistent with previous work in ferrets as well as with the location, physiology and connectivity of area SIII in cats. Given its associations, functional properties, location and homology, it is proposed that this region represents the third cortical somatosensory area (SIII) in ferrets.
How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.
Background Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in Fetal Alcohol Spectrum Disorders (FASD). Our lab has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons’ responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our lab demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here we test whether neuronal overexpression of SRF can achieve similar effects. Methods Ferrets received 3.5 g/kg alcohol i.p. (25% in saline) or saline as control every other day between postnatal day (P) 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes viral vector to express either GFP or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4–5 d after which single-unit recordings were conducted to determine if changes in ocular dominance had occurred. Results Overexpression of a constitutively active form of SRF by neurons restored OD plasticity in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. Conclusions Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.