This paper presents a comparison and assessment of usefulness of various measuring techniques (terrestrial laser scanning (TLS), tachymetry, photogrammetry) applied to establish the behavior of a suspension bridge under different load scenarios. The applied techniques were examined on the bridge with a 165 m span. The tested structure works as the technological bridge for a belt conveyor linking a lime mine and cement plant. The testing range consisted of conducting the non-contact measuring of the bridge and cable displacements under dynamic loads (during the belt conveyor movement—normal service loads) and static loads (while stopped). Tachymetric surveys were carried out using a precise total station (to obtain the reference data). A Canon 750D digital camera was applied in the photogrammetry technique. FARO Focus 3D and Trimble TX8 scanners were employed for the TLS measuring. The obtained results are especially important for bridge inspectors and managers who can use the non-contact measurements of serviced structures.
Conventional measurement technologies of transportation infrastructures consist of discrete surveys which can be inconvenient in practice. Furthermore, data obtained using these methods are restricted to several points (or elements) placed on the observed structures. Modern survey techniques—for example, terrestrial laser scanning (TLS) and photogrammetric—allow for the surveying of quasi-continuous surfaces of examined structures. The examined object is an historic cast-iron suspension bridge in Ozimek (south of Poland). The bridge was constructed in 1825–1827 and constitutes the oldest European bridge of this type. The surveys were conducted using TLS and digital photogrammetric techniques. The data obtained were compared with traditional survey results (reference data) and the project. The achieved effects of the measurements show that the discrepancies between the applied techniques (TLS and photogrammetry) and reference methods varied only within several millimeters and can be regarded as satisfactory. Better compliance was obtained for TLS than photogrammetry. The main benefits of the applied techniques include reducing time in the field and obtaining a three-dimensional model of the structure that has satisfactory accuracy.
The case study presents an assessment of the traffic-induced vibrations on humans and residential buildings, which is important for sustainable development. The analyzed residential building had several cracks in the walls. Control gypsum tapes were applied to all cracks in the building and additional elements near the road to determine the propagation of the damage. To determine the harmfulness of vibrations for humans, vibration acceleration measurements linked to road traffic inside the analyzed building were carried out. The vibration velocities inside the object were set based on the integration of the obtained accelerations. The experimental field investigation was carried out in places where humans commonly stayed (on the first floor) at the points where the vibrations are transmitted from the construction to humans. The study involved a time history analysis, a Fast Fourier Transform (FFT) analysis, and Root Mean Square (RMS) acceleration and velocity in a one-third octave bands spectrum. Based on the conducted experimental tests, it can be pointed out that the received velocity values in the tested building, caused by the passage of various vehicles, were below the permissible levels. However, it was noticed that the distance between the building and the fence had an important role in damping vibrations emitted by passing vehicles. The presented case study may be of use to other researchers who will be involved in similar cases and want to include sustainable infrastructure development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.