Bi-substituted rare-earth iron garnets, R3− xBi xFe5O12 (Bi:RIG), where R represents one of the rare-earth elements, exhibit the excellent magneto-optical (MO) properties that increase with Bi content x. In addition, magnetic properties of Bi:RIGs, such as the magnetization, the magnetic anisotropy, and the magnetostriction, could be controlled by choosing rare-earth elements. In this paper, we report on R0.5Bi2.5Fe5O12 (Bi2.5:RIG, R = Pr, Sm, and Eu) thin films on Gd3Ga5O12 (GGG) (100) single crystal substrates prepared by the metal–organic decomposition method. XRD analysis reveals that Bi2.5:RIG thin films are grown along the same orientation with GGG substrates, and their lattice constants are dependent on the ionic radii of the rare-earth ions. MO measurements show that Faraday spectra of the Bi2.5:RIG thin films have a typical spectral structure observed for Bi:RIGs. The magnetic anisotropy constants, the uniaxial magnetic anisotropy energy Ku, and the magnetocrystalline anisotropy energy K1 of Bi2.5:RIG (R = Y, Pr, Nd, Sm, and Eu) thin films are investigated by using the ferromagnetic resonance measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.