We use a functional renormalization group equation tailored to the Arnowitt–Deser–Misner formulation of gravity to study the scale dependence of Newton’s coupling and the cosmological constant on a background spacetime with topology . The resulting beta functions possess a non-trivial renormalization group fixed point, which may provide the high-energy completion of the theory through the asymptotic safety mechanism. The fixed point is robust with respect to changing the parametrization of the metric fluctuations and regulator scheme. The phase diagrams show that this fixed point is connected to a classical regime through a crossover. In addition the flow may exhibit a regime of “gravitational instability”, modifying the theory in the deep infrared. Our work complements earlier studies of the gravitational renormalization group flow on a background topology (Biemans et al. Phys Rev D 95:086013, 2017, Biemans et al. arXiv:1702.06539, 2017) and establishes that the flow is essentially independent of the background topology.
The Asymptotic Safety hypothesis states that the high-energy completion of gravity is provided by an interacting renormalization group fixed point. This implies nontrivial quantum corrections to the scaling dimensions of operators and correlation functions which are characteristic for the corresponding universality class. We use the composite operator formalism for the effective average action to derive an analytic expression for the scaling dimension of an infinite family of geometric operators d d x √ gR n . We demonstrate that the anomalous dimensions interpolate continuously between their fixed point value and zero when evaluated along renormalization group trajectories approximating classical general relativity at low energy. Thus classical geometry emerges when quantum fluctuations are integrated out. We also compare our results to the stability properties of the interacting renormalization group fixed point projected to f (R)-gravity, showing that the composite operator formalism in the single-operator approximation cannot be used to reliably determine the number of relevant parameters of the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.