The effect of incorporating nanostructured defects in a form of BaSnO3 (BSO) nanorods on the thickness dependence of critical current density (Jc) in GdBa2Cu3O7-x (GdBCO) thin films was investigated. Pure and 2 wt. % BSO-doped GdBCO films were fabricated by the pulsed laser deposition with the thicknesses t of both films increasing from 0.2 μm to 1.5 μm. The magnetization data measured at 77 K with the field being applied parallel to the c-axis of the films showed two important improvements. First, the Jcs of the GdBCO film were significantly enhanced with the BSO addition. Second, the BSO-doped GdBCO films exhibited less formation of a-axis grains on the film surface than the pure GdBCO films. As a result, a reduced thickness dependence of Jc was obtained for the BSO-doped GdBCO films. The two improvements may be explained by assuming that the growth of BSO nanostructured defects observed in the cross-sectional transmission electron microscopy functioned as effective artificial pinning centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.