We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.
Abstract. An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES) that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project) in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM 1 ) was 3.0 µg m −3 , dominated by organics (80 %) and sulfate (9.9 %). The organic aerosol (OA) had a nominal formula of C 1 H 1.38 N 0.004 O 0.44 , thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF) of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54) was interpreted as a surrogate for secondary OA (SOA) influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42) was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone), indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA) factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA) accounted for 91 % of the total OA mass and 72 % of the PM 1 mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM 1 mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA mass relative to CO ( OA/ CO) varied in the range of 5-196 µg m −3 ppm −1 , reflecting large variability in SOA production. The highest OA/ CO was reached when air masses were dominated by anthropogenic emissions in the presence of a high concentration of biogenic volatile organic compounds (BVOCs). This ratio, which was 97 µg m −3 ppm −1 on average, was much higher than when urban plumes arrived in a low BVOC Published by Copernicus Publications on behalf of the European Geosciences Union. 8132A. Setyan et al.: Characterization of submicron particles environment (∼36 µg m −3 ppm −1 ) or during other periods dominated by biogenic SOA (35 µg m −3 ppm −1 ). These results demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.
Abstract. New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute > 20% of glyoxal-SOA mass, and the total mass formed (5.8% of total SOA in the LA basin) is about a third of the simple uptake coefficient formulation without consideration of aerosol phase state and composition. Results from the continental US simulation reveal the much larger potential to form glyoxal-SOA over the eastern continental US. Interestingly, the low concentrations of glyoxal-SOA over the western continental US are not due to the lack of a potential to form glyoxal-SOA here. Rather these small glyoxal-SOA concentrations reflect dry conditions and high salt concentrations, and the potential to form SOA mass here will strongly depend on the water associated with particles.
Photochemically processed urban emissions were characterized at a mountain top location, free from local sources, within the Mexico City Metropolitan Area. Analysis of the Mexico City emission plume demonstrates a strong correlation between secondary organic aerosol and odd oxygen (O3 + NO2). The measured oxygenated‐organic aerosol correlates with odd oxygen measurements with an apparent slope of (104–180) μg m−3 ppmv−1 (STP) and r2 > 0.9. The dependence of the observed proportionality on the gas‐phase hydrocarbon profile is discussed. The observationally‐based correlation between oxygenated organic aerosol mass and odd oxygen may provide insight into poorly understood secondary organic aerosol production mechanisms by leveraging knowledge of gas‐phase ozone production chemistry. These results suggest that global and regional models may be able to use the observed proportionality to estimate SOA as a co‐product of modeled O3 production until more complete models of SOA formation become available.
The characterization of volatile and nonvolatile particle materials present in gas turbine exhaust is critical for accurate estimation of the potential impacts of airport activities on local air quality, atmospheric processes, and climate change. Two field campaigns were performed to collect an extensive set of particle and gaseous emission data for on-wing gas turbine engines. The tests included CFM56, RB211-535E4-B, AE3007, PW4158, and CJ610 engines, providing the opportunity to compare emissions from a wide range of engine technologies. Here we report mass, number, composition, and size data for the nonvolatile (soot) and volatile particles present in engine exhaust. For all engines, soot emissions (EIm-soot) are greater at climbout (85% power) and takeoff (100%) power than idle (4% or 7%) and approach (30%). At the engine exit plane, soot is the only type of particle detected. For exhaust sampled downwind (15–50 m) and diluted by ambient air, total particle number emissions (EIn-total) increases by about one or two orders of magnitude relative to the engine exit plane, and the increase is driven by volatile particles that have freshly nucleated in the cooling exhaust gas both in the free atmosphere and in the extractive sample lines. Fuel sulfur content is the determining factor for nucleation of new particles in the cooling exhaust gases. Compositional analysis indicates that the volatile particles consist of sulfate and organic materials (EIm-sulfate and EIm-organic). We estimate a lower bound S[IV] to S[VI] conversion efficiency of (0.08±0.01)%, independent of engine technology. Measurements of EIm-organic ranged from about 0.1 mg kg−1 to 40 mg kg−1. Lubrication oil was present in particles emitted by all engines and accounted for over 90% of the particulate organic mass under some conditions. The products of incomplete combustion are a likely source of the remaining volatile organic particle material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.