In the paper, on the basis of our studies and the available literature data, a model of changes in the number of active centers corresponding to the structure of the reactive coal particle has been developed. A new distribution function that links the specific surface area of a particle with its porosity and reaction degree has been proposed. An equation for estimation of changes in this parameter during the reaction, on the basis of the initial value, has been presented. In the range of our data and the analysis of the literature data, the model, with satisfactory accuracy, describes internal structural changes of coal and coal char particles. The present results may constitute a basis for complex modelling of coal conversion processes.Based on the results it was found that the total active centres are related to the internal surface area and porosity of the particle. For a specific coal type, this value depends on the porosity, true density and size of the particle. Changes in total active centres, when these structural properties during thermal conversion of coal are considered, are described in equations.
Every new car should be equipped with the catalyst, which limits the amount of harmful chemical compounds such as NOx, CH and CO emitted to the air. Auto catalyst consists of the ceramic or metallic carrier, on which is the layer with Platinum Group Metals playing catalytic role. There are many methods using for recovery those valuable metals from spent auto catalyst, however evry of those methods have some limitations. Proces described in the article is the modified method of metal collector, which used magnetohydrodynamic pump. Rotary electromagnetic field generates in the liquid metal rotary current, which as a consequence washing out the PGM metals from the ceramic carriers. Considering the possibilities of commercialization of the described method, the energy balance was made. From that balance the energetic efficiency of the unit was determined and the analysis of the temperature distribution was shown thermographycally.
Based on the Minimum Gibbs Free Enthalpy algorithm (FEM) and a model of reaction zones located around electrode tips in the submerged arc furnace, an analysis of the raw material chemical composition influence on the ferrosilicon smelting process was carried out. A model of the ferrosilicon process in the submerged arc furnace is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. Based on the model, sets of calculations were performed: for a Fe-Si-O-C system and, subsequently, for a more complex Fe-Si-O-C-Al-Ca-Mg-Ti system. For both systems, the energy and mass balance values were calculated and the effects of raw material contaminants on the efficiency of the ferrosilicon melting process were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.