The influence of climate change on wildlife disease dynamics is a burgeoning conservation and human health issue, but few long‐term studies empirically link climate to pathogen prevalence. Polar bears (Ursus maritimus) are vulnerable to the negative impacts of sea ice loss as a result of accelerated Arctic warming. While studies have associated changes in polar bear body condition, reproductive output, survival, and abundance to reductions in sea ice, no long‐term studies have documented the impact of climate change on pathogen exposure. We examined 425 serum samples from 381 adult polar bears, collected in western Hudson Bay (WH), Canada, for antibodies to selected pathogens across three time periods: 1986–1989 (n = 157), 1995–1998 (n = 159) and 2015–2017 (n = 109). We ran serological assays for antibodies to seven pathogens: Toxoplasma gondii, Neospora caninum, Trichinella spp., Francisella tularensis, Bordetella bronchiseptica, canine morbillivirus (CDV) and canine parvovirus (CPV). Seroprevalence of zoonotic parasites (T. gondii, Trichinella spp.) and bacterial pathogens (F. tularensis, B. bronchiseptica) increased significantly between 1986–1989 and 1995–1998, ranging from +6.2% to +20.8%, with T. gondii continuing to increase into 2015–2017 (+25.8% overall). Seroprevalence of viral pathogens (CDV, CPV) and N. caninum did not change with time. Toxoplasma gondii seroprevalence was higher following wetter summers, while seroprevalences of Trichinella spp. and B. bronchiseptica were positively correlated with hotter summers. Seroprevalence of antibodies to F. tularensis increased following years polar bears spent more days on land, and polar bears previously captured in human settlements were more likely to be seropositive for Trichinella spp. As the Arctic has warmed due to climate change, zoonotic pathogen exposure in WH polar bears has increased, driven by numerous altered ecosystem pathways.
Seroconversion and cross-reactivity in cattle infected with Anaplasma marginale or a recently described Ehrlichia species (BOV2010 from British Columbia, Canada) were investigated. The study used 76 samples from 20 animals, a commercially available competitive enzyme-linked immunosorbent assay (cELISA) for bovine anaplasmosis, and an indirect fluorescent antibody test (IFAT). Blood smear examination and/or polymerase chain reaction assay were performed to confirm or rule out the presence of Anaplasma or Ehrlichia. Samples comprised 3 groups. Group 1 consisted of 24 samples from 9 cattle naturally infected with Ehrlichia sp. BOV2010. Group 2 had 13 samples from 3 A. marginale–infected cattle from Manitoba, Canada. Group 3 had 39 samples, consisting of 26 from 5 calves experimentally infected with Ehrlichia sp. BOV2010, 10 from 2 calves experimentally infected with A. marginale from cattle (Manitoba) or bison (Saskatchewan), and 3 from an uninfected calf. All samples from cattle naturally or experimentally infected with Ehrlichia sp. BOV2010 or A. marginale were seropositive for A. marginale by both cELISA and IFAT, except 3 calves euthanized at 28 and 33 days post-inoculation (DPI) that did not seroconvert. Antibodies were detected in 2 experimental animals inoculated with Ehrlichia sp. BOV2010, as early as 28 and 33 DPI by the cELISA and IFAT, respectively, and by 42 DPI for both tests. The current study demonstrates that the specificity of the recombinant major surface protein 5 (MSP5) antigen is not restricted to Anaplasma spp., which reduces the utility of the test for serological diagnosis of bovine anaplasmosis in regions where Ehrlichia sp. BOV2010–infected cattle might exist.
A pepsin-HCl digestion assay and two compressorium techniques (trichinoscopy) for the identification of swine muscle tissue containing low levels of Trichinella larvae were compared as part of the test validation process for quality assurance purposes. Compressoria read with a stereomicroscope detected more larvae (P < 0.0001, n = 57) and more tissues (P = 0.0047, n = 57) than did compressoria read with a projection microscope (trichinoscope). The digestion assay evaluated was 3.2 times as likely as the best compressorium technique to identify a positive tissue when these procedures were used to test 1 g of infected muscle (P < 0.001; 95% confidence interval for the odds ratio, 2.0 to 5.4; n = 161 and n = 189, respectively). Detection by trichinoscopy improved as the number of larvae in tissues increased to > 2 larvae per g, but trichinoscopy was less sensitive than the digestion assay regardless of the tissue larval load. These data indicate that the quality controlled digestion assay used in this study is more sensitive than trichinoscopic techniques in the detection of tissues containing low levels of Trichinella larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.