We examined 40 wrists of 12 embalmed and eight fresh cadavers and defined the relative position of the flexor retinaculum to the neurovascular structure, ultrasonographic markers and safe zones by ultrasonography and anatomical dissection. Both longitudinal and transverse ultrasonographic sections clearly depicted the flexor retinaculum, neurovascular bundles, median nerve, flexor tendons and bony boundaries of the underlying joints. Topographic measurement showed [i] good correlation between the actual extent of the flexor retinaculum and the ultrasonographically determined distance between bony landmarks in all hands, and [ii] the widths and lengths of well-defined safe zones. A comparison study confirmed the accuracy of ultrasonography. We conclude that these ultrasonographic landmarks can locate the flexor retinaculum and facilitate safe and complete carpal tunnel release with open or minimally invasive techniques.
The renal capsule is an important determinant of whole kidney volume/pressure relationships. To gain further insights into its possible role we examined the mechanical properties of the dog renal capsule using standard materials testing procedures. From each of four locations on the kidney surface, the following mechanical properties of the renal capsule were determined: elastic modulus (force/unit of cross-sectional area theoretically required to double the length of the specimen), tensile stiffness (force/unit width theoretically required to double the length of the specimen), ultimate strength (stress at time of fracture of the specimen), and maximum strain (percent strain at time of the fracture of the specimen). We found that the elastic modulus of the renal capsule from all capsular sites was substantially greater than values previously reported for dog aorta. The stiffness of the capsule covering the anterior-posterior surface of the kidney was found to be about 50% greater than the stiffness of the capsule covering the lateral and polar surfaces of the kidney. The ultimate strength of the anterior-posterior capsule was significantly greater than that of the lateral or polar capsule. This finding may explain the clinical observation that the spontaneous rupture of the renal capsule and parenchyma associated with the acute swelling of transplant rejection is confined almost exclusively to the lateral and polar portions of the renal capsule and cortex. The mean maximum strain at each capsular site was about 35%. This degree of circumferential expansion corresponds to about a doubling of kidney volume. Thus, this observation suggests that the renal capsule is at risk to undergo spontaneous rupture when renal volume increases of this magnitude are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.