We present the results of a study of muon pairs with invariant masses greater than 4.05 GeV/c2 produced in high-energy pion-nucleon interactions. The production cross section together with the inferred pion and nucleon structure functions are reported and compared with other experiments and with QCD predictions. The transverse-momentum distributions are also presented. Finally, the full angular distribution in cos0 and 4 is given as a function of mass, Feynman x, and transverse momentum. Longitudinal photon polarization is seen in the lower portion of the mass range at high x,. This result is compared with a higher-twist model.
A search forν µ →ν e oscillations was conducted by the Liquid Scintillator Neutrino Detector at the Los Alamos Neutron Science Center usingν µ from µ + decay at rest. A total excess of 87.9 ± 22.4 ± 6.0 events consistent withν e p → e + n scattering was observed above the expected background. This excess corresponds to an oscillation probability of (0.264 ± 0.067 ± 0.045)%, which is consistent with an earlier analysis. In conjunction with other known limits on neutrino oscillations, the LSND data suggest that neutrino oscillations occur in the 0.2 − 10 eV 2 /c 4 ∆m 2 range, indicating a neutrino mass greater than 0.4 eV/c 2 .2
The Booster Neutrino Experiment (MiniBooNE) searches for ν µ → ν e oscillations using the O(1 GeV) neutrino beam produced by the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL). The Booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beamline incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beamline materials, as well as the decay of particles.The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.