The heteromeric BUF protein was originally shown to bind to URS1 elements which are situated upstream of many genes in Saccharomyces cerevisiae and mediate negative control of their transcription. Among the genes regulated through the URS1 site and the proteins interacting with it are those participating in carbon, nitrogen, and inositol metabolism; electron transport; meiosis; sporulation; and mating-type switching. We show here that pure BUF protein, in addition to binding to the negatively acting URS1 site, also binds to CAR1 sequences supporting transcriptional activation (upstream activation sequences). To determine the BUF protein structure, we cloned and sequenced the BUF1 and BUF2 genes and found them to be identical to the RF-A (RP-A) gene whose products participate in yeast DNA replication as single-stranded DNA binding proteins. These data argue that BUF protein-binding sites serve multiple roles in transcription and replication.
CAR1 (arginase) gene expression responds to multiple environmental signals; expression is induced in response to the intracellular accumulation of arginine and repressed when readily transported and catabolized nitrogen sources are available in the environment. Up to 14 cis-acting sites and 9 trans-acting factors have been implicated in regulated CAR1 transcription. In all but one case, the sites are redundant. To test whether these sites actually participate in CAR1 expression, each class of sites was inactivated by substitution mutations that retained the native spacing of the CAR1 cis-acting elements. Three types of sites function independently of the nitrogen source: two clusters of Abf1p-and Rap1p-binding sites, and a GC-rich sequence. Two different sets of nitrogen source-dependent sites are also required: the first consists of two GATAA-containing UAS NTR sites that mediate nitrogen catabolite repression-sensitive transcription, and the second is arginine dependent and consists of three UAS I elements that activate transcription only when arginine is present. A single URS1 site mediates repression of CAR1 arginine-independent upstream activator site (UAS) activity in the absence of arginine and the presence of a poor nitrogen source (a condition under which the inducer-independent Gln3p can function in association with the UAS NTR sites). When arginine is present, the combined activity of the UAS elements overcomes the negative effects mediated by URS1. Mutation of the classes of sites either singly or in combination markedly alters CAR1 promoter operation and control, supporting the idea that they function synergistically to regulate expression of the gene.One of the more complex and well-studied nitrogen catabolic genes in Saccharomyces cerevisiae is CAR1, which encodes arginase
The protein that binds to the URS1 site situated upstream ofmany genes in Saccharomyces cerevisiae is a central element responsible for global negative control of transcription in this organism. Among the genes whose expression Is regulated by this protein are those that participate in nitrogen metabolism, carbon metabolism, electron transport, inositol metabolism, heat shock response, meiosis, and sporulation. This factor, binding URS1 factor (BUF), has been purified and shown to be a heteromeric protein composed of 37.5-and 73.5-kDa monomers. The heteromeric form of BUF is stably maintained both in solution and bound to its DNA target site.
Expression of the FOX3 gene, which encodes yeast peroxisomal 3-oxoacyl-coenzyme A thiolase, can be induced by oleate and repressed by glucose. Previously, we have shown that induction was mediated by an oleate response element. Just upstream of this element a negatively acting control region that mediated glucose repression was found. In order to study this negative control region, we carried out DNA-binding assays and analyzed phenotypes of mutations in this region and in the trans-acting factor CAR80, which is identical to UME6. DNA-binding assays showed that two multifunctional yeast proteins, ABF1 and RP-A, interacted with the negative control element independently of the transcriptional activity of the FOX3 gene. ABF1 and RP-A, the latter being identical to BUF, were able to bind to DNA independently of one another but also simultaneously. The phenotypes of mutations in either DNA-binding sites of ABF1, RP-A, or both, which affected the DNA binding of these factors in vitro, indicated that these sites and the proteins that interact with them participate in glucose repression. The involvement of the RP-A site in glucose repression was further supported by our observation that the CAR80 gene product, which is required for repression mediated by the RP-A site, was essential for maintenance of glucose repression. In addition to the RP-A site in the FOX3 promoter, similar sequences were observed in other genes involved in peroxisomal function. RP-A proved to bind to all of these sequences, albeit with various affinities. From these results it is concluded that the ABF1 and RP-A sites are being required in concert to mediate glucose repression of the FOX3 gene. In addition, coordinated regulation of expression of genes involved in peroxisomal function in response to glucose is mediated by proteins associated with the RP-A site, probably RP-A and CAR80.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.