Mechanical degradation of electrode active materials (''electrochemical shock'') contributes to impedance growth of battery electrodes, but relatively few design criteria have been developed to mitigate fracture. Using micromechanical models and in situ acoustic emission experiments, we demonstrate and explain C-rate independent electrochemical shock in polycrystalline electrode materials with anisotropic Vegard coefficients. We conclude that minimizing the principal shear strain, rather than minimizing net volume change as previously suggested, is an important new design criterion for crystal chemical engineering of electrode materials for mechanical reliability. Polycrystalline particles of anisotropic Li-storage materials should be synthesized with primary crystallite sizes smaller than a material-specific critical size to avoid fracture along grain boundaries. Finally, we revise the electrochemical shock map construction to incorporate the material-specific critical microstructure feature sizes for C-rate independent electrochemical shock mechanisms, providing a simple tool for designing long-lived battery electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.