We report observations from the Hubble Space Telescope (HST) of Cepheid variables in the host galaxies of 42 Type Ia supernovae (SNe Ia) used to calibrate the Hubble constant (H 0). These include the complete sample of all suitable SNe Ia discovered in the last four decades at redshift z ≤ 0.01, collected and calibrated from ≥1000 HST orbits, more than doubling the sample whose size limits the precision of the direct determination of H 0. The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in NGC 4258 (here tripling that sample of Cepheids), and detached eclipsing binaries in the Large Magellanic Cloud. All Cepheids in these anchors and SN Ia hosts were measured with the same instrument (WFC3) and filters (F555W, F814W, F160W) to negate zero-point errors. We present multiple verifications of Cepheid photometry and six tests of background determinations that show Cepheid measurements are accurate in the presence of crowded backgrounds. The SNe Ia in these hosts calibrate the magnitude–redshift relation from the revised Pantheon+ compilation, accounting here for covariance between all SN data and with host properties and SN surveys matched throughout to negate systematics. We decrease the uncertainty in the local determination of H 0 to 1 km s−1 Mpc−1 including systematics. We present results for a comprehensive set of nearly 70 analysis variants to explore the sensitivity of H 0 to selections of anchors, SN surveys, redshift ranges, the treatment of Cepheid dust, metallicity, form of the period–luminosity relation, SN color, peculiar-velocity corrections, sample bifurcations, and simultaneous measurement of the expansion history. Our baseline result from the Cepheid–SN Ia sample is H 0 = 73.04 ± 1.04 km s−1 Mpc−1, which includes systematic uncertainties and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN Ia hosts and NGC 4258, and include them simultaneously to yield 72.53 ± 0.99 km s−1 Mpc−1. The inclusion of high-redshift SNe Ia yields H 0 = 73.30 ± 1.04 km s−1 Mpc−1 and q 0 = −0.51 ± 0.024. We find a 5σ difference with the prediction of H 0 from Planck cosmic microwave background observations under ΛCDM, with no indication that the discrepancy arises from measurement uncertainties or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining H 0 remains unknown.
We report observations from the Hubble Space Telescope (HST) of Cepheid variables in the host galaxies of 42 Type Ia supernovae (SNe Ia) used to calibrate the Hubble constant (H 0 ). These include the complete sample of all suitable SNe Ia discovered in the last four decades at z ≤ 0.01, collected and calibrated from ≥ 1000 HST orbits, more than doubling the sample whose size limits the precision of the direct determination of H 0 . The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in NGC 4258 (here tripling that sample of Cepheids), and detached eclipsing binaries in the Large Magellanic Cloud. All Cepheids in these anchors and SN Ia hosts were measured with the same instrument (WFC3) and filters (F555W, F814W, F160W) to negate zeropoint errors.We present multiple verifications of Cepheid photometry and six tests of background determinations that show Cepheid measurements are accurate in the presence of crowding. The SNe Ia in these hosts calibrate the magnitude-redshift relation from the revised Pantheon+ compilation, accounting here for covariance between all SNe data and with host properties and SN surveys matched throughout to negate systematics. We decrease the uncertainty in the local determination of H 0 to 1 km s −1 Mpc −1 including systematics. We present results for a comprehensive set of nearly 70 analysis variants to explore the sensitivity of H 0 to selections of anchors, SN surveys, redshift ranges, the treatment of Cepheid dust, metallicity, form of the period-luminosity relation, SN color, peculiar-velocity corrections, sample bifurcations, and simultaneous measurement of the expansion history.Our baseline result from the Cepheid-SN Ia sample is H 0 = 73.04 ± 1.04 km s −1 Mpc −1 , which includes systematic uncertainties and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN Ia hosts and NGC 4258, and include them simultaneously to yield 72.53 ± 0.99 km s −1 Mpc −1 . The inclusion of high-redshift SNe Ia yields H 0 = 73.30 ± 1.04 km s −1 Mpc −1 and q 0 = −0.51 ± 0.024. We find a 5σ difference with the prediction of H 0 from Planck CMB observations under ΛCDM, with no indication that the discrepancy arises from measurement uncertainties or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining the Hubble constant remains unknown.
We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
We use the largest sample to date of spectroscopic supernova (SN) Ia distances and redshifts to look for evidence in the Hubble diagram of large-scale outflows caused by local voids suggested to exist at z < 0.15. Our sample combines data from the Pantheon sample with the Foundation survey, and the most recent release of light curves from the Carnegie Supernova Project, to create a sample of 1295 SNe over a redshift range of 0.01 < z < 2.26. We make use of an inhomogeneous and isotropic Lemaitre–Tolman–Bondi metric to model a void in the SN Ia distance–redshift relation. We conclude that the SN luminosity distance–redshift relation is inconsistent at the 4–5σ confidence level with large local underdensities ( , where the density contrast δ = Δρ/ρ) proposed in some galaxy count studies, and find no evidence of a change in the Hubble constant corresponding to a void with a sharp edge in the redshift range 0.023 < z < 0.15. With an empirical precision of , we conclude that the distance ladder measurement is not affected by local density contrasts, in agreement with a cosmic variance of , predicted from simulations of large-scale structure. Given that uncertainty in the distance ladder value is , this does not affect the Hubble tension. We derive a 5σ constraint on local density contrasts on scales larger than of . The presence of local structure does not appear to impede the possibility of measuring the Hubble constant to 1% precision.
We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size, increased redshift span, and improved treatment of systematic uncertainties in comparison to the original Pantheon analysis and results in a factor of 2 improvement in cosmological constraining power. For a FlatΛCDM model, we find Ω M = 0.338 ± 0.018 from SNe Ia alone. For a Flatw 0 CDM model, we measure w 0 = −0.89 ± 0.13 from SNe Ia alone, H 0 = 72.86 +0.94 −1.06 km s −1 Mpc −1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = −0.978 +0.024 −0.031 when combining the SN likelihood with constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a Flatw 0 w a CDM universe, and measure w a = −0.4 +1.0 −1.8 from Pantheon+ alone, H 0 = 73.40 +0.99 −1.22 km s −1 Mpc −1 when including SH0ES, and w a = −0.65 +0.28 −0.32 when combining Pan-theon+ with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one third of the total uncertainty in the measurement of H 0 and cannot explain the present "Hubble tension" between local measurements and early-Universe predictions from the cosmological model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.