Coexisting multi-geodesic acoustic modes (GAMs), especially coexisting dual GAMs, are observed and studied through Langmuir probe arrays at the edge plasmas of the HT-7 tokamak with lithium-coated walls. The dual GAMs are named a low-frequency GAM (LFGAM) and a high-frequency GAM (HFGAM), and it is found that within the measuring range, the HFGAM propagates outwards while the LFGAM propagates both inwards and outwards with their central frequencies nearly unchanged, and both modes have maximum amplitudes at positions with radial wavenumbers close to zero; meanwhile, the two positions happen to be where the continuum GAM frequency is closest to the central frequencies of the LFGAM and the HFGAM. These characteristics are consistent with those of a kinetic GAM converted from a continuum GAM. The nonlinear couplings between the LFGAM and the HFGAM are also analysed. In this study, we observed not only the interaction between the LFGAM and the HFGAM, but also the self-coupling of the GAM with the beat frequency between them, as well as the coupling between the LFGAM and an unknown mode at ∼50 kHz. These nonlinear interactions may play important roles during the saturation process of GAMs. Additionally, amplitude correlation analyses of multi-GAMs indicate that second harmonic GAMs are probably generated from the self-interaction of fundamental GAMs.
By analyzing large quantities of discharges in the unfavorable ion B ×∇B drift direction, the I-mode operation has been confirmed in EAST tokamak. During the L-mode to I-mode transition, the energy confinement has a prominent improvement by the formation of a high-temperature edge pedestal, while the particle confinement remains almost identical to that in the L-mode. Similar with the I-mode observation on other devices, the E r profiles obtained by the eight-channel Doppler backscattering system (DBS8)[1] show a deeper edge E r well in the I-mode than that in the L-mode. And a weak coherent mode (WCM) with the frequency range of 40-150 kHz is observed at the edge plasma with the radial extend of about 2-3 cm. WCM could be observed in both density fluctuation and radial electric field fluctuation, and the bicoherence analyses showed significant couplings between WCM and high frequency turbulence, implying that the E r fluctuation and the caused flow shear from WCM should play an important role during I-mode. In addition, a low-frequency oscillation with a frequency range of 5-10 kHz is always accompanied with WCM, where GAM intensity is decreased or disappeared. Many evidences show that the a low-frequency oscillation may be a arXiv:1902.04750v3 [physics.plasm-ph]
A reproducible stationary improved confinement mode (I-mode) has been achieved recently in the Experimental Advanced Superconducting Tokamak (EAST), featuring good confinement without particle transport barrier. The microscopic mechanism of sustaining stationary I-mode, based on the coupling between turbulence transitions and the edge temperature oscillation, has been discovered for the first time. A radially localized edge temperature ring oscillation (ETRO) with azimuthally symmetric structure (n = 0, m = 0) has been identified and it is accompanied by alternating turbulence transitions between an electron diamagnetic drift turbulence (ET) and an ion diamagnetic drift turbulence (IT). The transition is controlled by local electron temperature gradient and strong non-linear couplings between weak coherent mode (WCM) and ET could be identified near the pedestal top, suggesting the unique status of the pedestal top region in sustaining the stationary I-mode confinement on EAST.
A strong relationship between the fishbone instability and internal transport barrier (ITB) formation has been found on the Experimental Advanced Superconducting Tokamak (EAST) in high β N ELMy H-mode discharges. ITB formation always appears after the fishbone instability, and the fishbone disappears when the ITB grows to a certain extent. Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and non-linear dynamics of beam-driven fishbone instabilities in these shots. The simulation results show that the fishbone instability absorbs the energy of the fast ions and changes the distribution function of the fast ions, leading to the accumulation of fast ions near the ITB, which might eventually assist in the formation of the ITB. The q = 1 surface disappearance caused by the bootstrap current generated by the steep pressure gradient in the ITB region has been considered as the reason for the fishbone instability vanishing. This process has also been reproduced in simulation. However, the timescale of this change in the q profile is not sufficient under classical current diffusion times. The simulation utilizes another assumption explaining the disappearance of the fishbone instability. The density will form a barrier in the ITB region, which should broaden the distribution of the fast ions, and the broadening profile of the distribution of the fast ion mitigates the growth of the fishbone instability.
Geodesic acoustic modes (GAMs) [1], which are the highfrequency branch of zonal flows, are azimuthally symmetric modes unique to toroidal plasma. GAMs are characterized by potential fluctuations with m = n = 0 (m/n is the polodial/ toroidal mode number). Recently, GAMs have received considerable attention in magnetic fusion plasma research due to the important role in controlling the transport level of plasmas through nonlinear interaction with drift-wave turbulence [2, 3]. Those conclusions have been further enhanced by the observation of a competition between the turbulence level and GAM flow shearing in the limit-cycle phase on ASDEX-U [4]. By now, it has been pointed out that the time-dependent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.