As medical ultrasound imaging moves to larger apertures and higher frequencies, tissue sound-speed variations continue to limit resolution. In geophysical imaging, a standard approach for estimating near-surface aberrating delays is to analyze the time shifts between common-midpoint signals. This requires complete data-echoes from every source/receiver pair in the array. Unfocused common-midpoint signals remain highly correlated in the presence of delay aberrations; there is also tremendous redundancy in the data. In medical ultrasound, this technique has been impaired by the wide-angle, random-scattering nature of tissue. This has made it difficult to estimate azimuth-dependent aberration profiles or to harness the full redundancy in the complete data. Prefiltering the data with two-dimensional fan filters mitigates these problems, permitting highly overdetermined, least-squares solutions for the aberration profiles at many steering angles. In experiments with a tissue-mimicking phantom target and silicone rubber aberrators at nonzero stand-off distances from a one-dimensional phased array, this overdetermined, fan-filtering algorithm significantly outperformed other phase-screen algorithms based on nearest-neighbor cross-correlation, speckle brightness maximization, and common-midpoint signal analysis. Our results imply that there is still progress to be made in imaging with single-valued focusing operators. It also appears that the signal-to-noise penalty for using complete data sets is partially compensated by the overdetermined nature of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.