Abstract-In this paper, we investigate the feasibility of detecting defects in certain artificial heart valves by determining the electromagnetic behavior of some simple models with the aid of thin-wire integral equations. The idea is to use the stationary current that occurs at late times after the excitation of a closed loop as a discriminator. This current exhibits an exponential decay when a resistive load is included that is representative of fatigue or a partial fracture. The decay rate is indicative of the severity of the defect. For a wire with an opening, which is representative of a complete fracture, the late-time current is completely absent. As a simplified model of remote detection by a small loop antenna that could be introduced via a catheter, we consider the coupling between two parallel circular wires. In all cases, the dispersive environment of the valve is taken to be homogeneous and filled with blood since this medium exhibits a representative dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.