BackgroundGlobal positioning system (GPS) technology for monitoring home range and movements of wildlife has resulted in prohibitively large sample sizes of locations for traditional estimators of home range. We used area-under-the-curve to explore the fit of 8 estimators of home range to data collected with both GPS and concurrent very high frequency (VHF) technology on a terrestrial mammal, the Florida panther Puma concolor coryi, to evaluate recently developed and traditional estimators.ResultsArea-under-the-curve was the highest for Florida panthers equipped with Global Positioning System (GPS) technology compared to VHF technology. For our study animal, estimators of home range that incorporated a temporal component to estimation performed better than traditional first- and second-generation estimators.ConclusionsComparisons of fit of home range contours with locations collected would suggest that use of VHF technology is not as accurate as GPS technology to estimate size of home range for large mammals. Estimators of home range collected with GPS technology performed better than those estimated with VHF technology regardless of estimator used. Furthermore, estimators that incorporate a temporal component (third-generation estimators) appeared to be the most reliable regardless of whether kernel-based or Brownian bridge-based algorithms were used and in comparison to first- and second-generation estimators. We defined third-generation estimators of home range as any estimator that incorporates time, space, animal-specific parameters, and habitat. Such estimators would include movement-based kernel density, Brownian bridge movement models, and dynamic Brownian bridge movement models among others that have yet to be evaluated.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-015-0039-4) contains supplementary material, which is available to authorized users.
dChronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since spread to cervids in 23 states, two Canadian provinces, and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction of farmed or free-ranging deer and elk or surveillance studies of private or protected herds, where depopulation is contraindicated. This study sought to evaluate the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay by using recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brush samples collected antemortem from farmed white-tailed deer (n ؍ 409). Antemortem findings were then compared to results from ante-and postmortem samples (RAMALT, brainstem, and medial retropharyngeal lymph nodes) evaluated by using the current gold standard in vitro assay, immunohistochemistry (IHC) analysis. We hypothesized that the sensitivity of RT-QuIC would be comparable to IHC analysis in antemortem tissues and would correlate with both the genotype and the stage of clinical disease. Our results showed that RAMALT testing by RT-QuIC assay had the highest sensitivity (69.8%) compared to that of postmortem testing, with a specificity of >93.9%. These data suggest that RT-QuIC, like IHC analysis, is an effective assay for detection of PrP CWD in rectal biopsy specimens and other antemortem samples and, with further research to identify more sensitive tissues, bodily fluids, or experimental conditions, has potential for large-scale and rapid automated testing for CWD diagnosis. C hronic wasting disease (CWD) is an efficiently transmitted spongiform encephalopathy of cervids (e.g., deer, elk, and moose) and is the only known prion disease affecting both farmed and free-ranging, nondomestic animals. It is the only prion disease of animals the control and eradication of which, through movement restrictions, genotypic breeding schemes, or herd reduction/depopulation efforts, for example, are problematic (1, 2). While the origins of CWD are uncertain, the disease has been present in cervid populations of northern Colorado and southern Wyoming for nearly 50 years (3, 4) and has now been identified in both captive and free-ranging cervids in 23 states, two Canadian provinces, and the Republic of Korea (5, 6). With intensified national and international surveillance efforts, CWD continues to be identified in areas previously considered free of infection, including recent discoveries in Iowa, Texas, Pennsylvania, and Ohio (7, 8, 9, 10). The prevalence of CWD varies from 0 to 30% among free-ranging populations (11, 12) but may approach 80% in cervid farm operations under quarantine (13).The expanding distribution of CWD across North America can be considered to have followed two nearly distinct pathways: (i) gradual proliferatio...
Variation in the size of home range of white-tailed deer (Odocoileus virginianus) has broad implications for managing populations, agricultural damage, and disease spread and transmission. Size of home range of deer also varies seasonally because plant phenology dictates the vegetation types that are used as foraging or resting sites. Knowledge of the landscape configuration and connectivity that contributes to variation in size of home range of deer for the region is needed to fully understand differences and similarities of deer ecology throughout the Midwest. We developed a research team from four Midwestern states to investigate how size of home range of deer in agro-forested landscapes is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.