Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling. 7,8-Dihydroxyflavone protected wild-type, but not TrkB-deficient, neurons from apoptosis. Administration of 7,8-dihydroxyflavone to mice activated TrkB in the brain, inhibited kainic acid-induced toxicity, decreased infarct volumes in stroke in a TrkB-dependent manner, and was neuroprotective in an animal model of Parkinson disease. Thus, 7,8-dihydroxyflavone imitates BDNF and acts as a robust TrkB agonist, providing a powerful therapeutic tool for the treatment of various neurological diseases.
The telomerase enzyme is a potential therapeutic target in many human cancers. A series of potent inhibitors has been designed by computer modeling, which exploit the unique structural features of quadruplex DNA. These 3,6,9-trisubstituted acridine inhibitors are predicted to interact selectively with the human DNA quadruplex structure, as a means of specifically inhibiting the action of human telomerase in extending the length of single-stranded telomeric DNA. The anilino substituent at the 9-position of the acridine chromophore is predicted to lie in a third groove of the quadruplex. Calculated relative binding energies predict enhanced selectivity compared with earlier 3,6-disubstituted compounds, as a result of this substituent. The ranking order of energies is in accord with equilibrium binding constants for quadruplex measured by surface plasmon resonance techniques, which also show reduced duplex binding compared with the disubstituted compounds. The 3,6,9-trisubstututed acridines have potent in vitro inhibitory activity against human telomerase, with EC50 values of up to 60 nM. T he telomeric ends of chromosomes consist of tandem repeats of simple guanine-rich DNA protein-associated motifs whose function is to protect the ends from unwanted DNA damage-repair, recombination, and end-fusions. In eukaryotics the repeat is TTAGGG, with telomere length varying between ca. 5 and 15 kb (1, 2). Cancer cells typically have short telomeres, whereas stem cell telomere length tends to be at the high end of this range. The terminal 150-200 bases at the 3Ј end of human telomeres form a single-stranded overhang, whose exact structure is not fully established, although loop-type arrangements have been suggested from electron microscope studies (3). Telomeres shorten in somatic cells on each round of replication, by 50-200 bases, as a consequence of the inability of DNA polymerase to fully replicate the ends (4). Once telomeres reach a critically short length, cells enter a senescent state and do not replicate further (5). By contrast, the short telomeres in tumor cells are stable in length, maintained by the action of a specialized DNA polymerase, the telomerase enzyme complex, which catalyses the synthesis of further telomere repeats (6). Telomerase is activated in 80-90% of human tumors and is undetectable in most normal somatic cells (7). This activation has been shown to be a key step in the immortalization process in human cells, leading to tumorigenesis (8). A small proportion of tumor cells have an alternative telomere maintenance pathway (ALT) which appears to be independent of telomerase and involves recombination events. Inhibition of telomerase by a dominant negative mutant (9, 10), or by synthetic oligonucleotides targeted to the RNA template (11), leads to telomere shortening, growth arrest and apoptosis for tumor cells in culture. Telomerase is thus a highly attractive target for selective anti-cancer therapy (12).We have focused on the rational discovery of small-molecule telomerase inhibitors with pharma...
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
Designed, synthetic heterocyclic diamidines have excellent activity against eukaryotic parasites that cause diseases such as sleeping sickness and leishmania and adversely affect millions of people each year. The most active compounds bind specifically and strongly in the DNA minor groove at AT sequences. The compounds enter parasite cells rapidly and appear first in the kinetoplast that contains the mitochondrial DNA of the parasite. With time the compounds are also generally seen in the cell nucleus but are not significantly observed in the cytoplasm. The kinetoplast decays over time and disappears from the mitochondria of treated cells. At this point the compounds begin to be observed in other regions of the cell, such as the acidocalcisomes. The cells typically die in 24-48 hours after treatment. Active compounds appear to selectively target extended AT sequences and induce changes in kinetoplast DNA minicircles that cause a synergistic destruction of the catenated kinetoplast DNA network and cell death.
The RNA genomes of a number of pathogenic RNA viruses, such as HIV-1, have extensive folded conformations with imperfect A-form duplexes that are essential for virus function and could serve as targets for structure-specific antiviral drugs. As an initial step in the discovery of such drugs, the interactions with RNA of a wide variety of compounds, which are known to bind to DNA in the minor groove, by classical or by threading intercalation, have been evaluated by thermal melting and viscometric analyses. The corresponding sequence RNA and DNA polymers, poly(A).poly(U) and poly(dA).poly(dT), were used as test systems for analysis of RNA binding strength and selectivity. Compounds that bind exclusively in the minor groove in AT sequences of DNA (e.g., netropsin, distamycin, and a zinc porphyrin derivative) do not have significant interactions with RNA. Compounds that bind in the minor grove in AT sequences of DNA but have other favorable interactions in GC sequences of DNA (e.q., Hoechst 33258, DAPI, and other aromatic diamidines) can have very strong RNA interactions. A group of classical intercalators and a group of intercalators with unfused aromatic ring systems contain compounds that intercalate and have strong interactions with RNA. At this time, no clear pattern of molecular structure that favors RNA over DNA interactions for intercalators has emerged. Compounds that bind to DNA by threading intercalation generally bind to RNA by the same mode, but none of the threading intercalators tested to date have shown selective interactions with RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.